Categories
Life Sciences Consumer Goods Materials and Chemicals Construction & Manufacturing Food and Beverages Energy and Power Semiconductor and Electronics Automotive and Transportation ICT & Media Aerospace & Defense BFSI

Int'l : +1-503-894-6022 | Toll Free : +1-800-792-5285 | help@alliedmarketresearch.com

Financial Fraud Detection Software Market by Component (Solution, Service), by Deployment Mode (On-premise, Cloud), by Fraud Type (Money Laundering, Identity Theft, Debit and Credit Card Frauds, Claim Frauds, Transfer Frauds, Others), by End User (Banks, NBFCs, Others): Global Opportunity Analysis and Industry Forecast, 2023-2032

A12743

Pages: 250

Charts: 66

Tables: 152

Financial Fraud Detection Software Market Research, 2032

The global financial fraud detection software market was valued at $13 billion in 2022, and is projected to reach $50.3 billion by 2032, growing at a CAGR of 14.8% from 2023 to 2032.

Financial fraud detection software applications are used to provide analytical solutions for fraud incidents and help identify or prevent future occurrences. Currently, enterprises are more susceptible to incidents of fraud that may result in financial losses due to the generation of massive amounts of enterprise data and an increase in technological advancements.

The growing adoption of online banking applications and mobile banking services and increasing incidences of financial fraud are boosting the growth of the global financial fraud detection software market. in addition, the increase in the use of digital transformation technology the positively impacts growth of the financial fraud detection software market. However, growing incidents of false positive rates and high implementation costs are hampering the financial fraud detection software market growth. On the contrary, rising Innovations in the Fintech Industry are expected to offer remunerative opportunities for the expansion of the financial fraud detection software market during the forecast period.

Segment Review

The financial fraud detection software market is segmented on the basis of component, deployment mode, type, end user, and region. On the basis of component, the market is categorized into solution and service. On the basis of deployment mode, the market is fragmented into on-premise and cloud. On the basis of type, the market is bifurcated into core money laundering, identity theft, debit & credit card frauds, claim frauds, transfer frauds, and others. By end user, it is classified into banks, NBFCs, and others. By region, the market is analyzed across North America, Europe, Asia-Pacific, and LAMEA.

[COMPONENTGRAPH]

In terms of component, the solution segment holds the highest financial fraud detection software market share as it provides personalized services, accelerates throughput, and reduces operational costs. However, the service segment is expected to grow at the highest rate during the forecast period. These services reduce management concerns efficiently with personalized assistance and optimized performance development.

[REGIONGRAPH]

Region wise, the financial fraud detection software market size was dominated by North America in 2022, and is expected to retain its position during the forecast period, owing to rise in adoption of financial fraud detection software in small & medium enterprises to ensure effective flow of financial activities. However, Asia-Pacific is expected to witness significant growth during the forecast period, due to the growing adoption of web-based and mobile-based business applications in the sector of banking.

The key players that operate in the financial fraud detection software market are Feedzai, FiCO, Oracle Corporation, ThreatMetrix, SAS Institute Inc., SAP SE, Fiserv, Inc., IBM Corporation, Software AG, and Experian plc. These players have adopted various strategies to increase their market penetration and strengthen their position in the financial fraud detection software industry.

Competition Analysis

Recent Partnerships in the Financial Fraud Detection Software Market

June 28, 2023: Treasury Prime partnered Sardine to strengthen fraud detection capabilities for enterprises and banks on the platform. This collaboration will empower companies and financial institutions within Treasury Prime's multi-bank network to leverage Sardine's Sponsor Bank Operating System, offering turnkey fraud management and oversee BSA/AML compliance at 3rd parties.

Recent Product Launches in the Financial Fraud Detection Software Market

In January 11, 2021, NICE Actimize, a leading provider of financial crime software solutions, launched a new cloud-based fraud detection and prevention solution. The solution, called ActimizeWatch, is designed to help businesses of all sizes prevent fraud in real time by leveraging machine learning and artificial intelligence technologies. ActimizeWatch provides an integrated platform that can be used across multiple channels, including mobile and web, and offers advanced analytics to help detect even the most sophisticated fraud attempts.

Recent Collaboration in the Financial Fraud Detection Software Market

On August 09, 2023, PULSE, collaborated with FICO to deliver market-leading fraud-detection technology that reduces losses and risk exposure for financial institutions, merchants and consumers worldwide. This extension supports PULSE in continuing to enhance its DebitProtect® suite of advanced fraud-mitigation solutions, powered by the state-of-the-art FICO® Falcon® Fraud Manager.

Top Impacting Factors

Growing Adoption of Online Banking Applications and Mobile Banking Services

The increased use of online applications and mobile banking services has resulted in an increase in the number of illegitimate domains and mobile apps. Fake websites and online apps are on the rise in other industries, including retail and eCommerce, manufacturing, banking, and healthcare. These websites and apps imitate real retail stores and home delivery services, luring clients into making fraudulent online transactions. Customers in the banking industry are increasingly using mobile applications for a variety of purposes, including online payment, statement review, complaint registration, and feedback. According to the Boston Consulting Group (BCG), almost 70% of urbanites worldwide are digitally persuaded to buy financial products and services through online banking apps or mobile banking websites. In the current economic climate, many firms are integrating solutions across their business units to progress their business road maps. During the forecast period, the growing number of internet users, increasing acceptance of digital payment methods, and rising number of start-ups are likely to boost the global financial fraud detection software market.

Increasing Incidences of Financial Fraud

The increase in incidences of financial fraud drives the growth of the financial fraud detection software market, owing to rising awareness of financial frauds with advanced technology that keep up with evolving fraudulent techniques. In addition, the banking sector along with other units that deal in different types of monetary transactions has become highly prone to cyber-attacks and financial fraud. Factors like rapid digitization, lack of security awareness amongst consumers, insider threats, rising complexity, and economic instability are the leading causes of the increase in digital cyber-crimes including financial fraud. In addition, the rising rate of digital payment systems makes consumers more vulnerable to becoming victims to financial fraudsters causing a greater need to have fraud-detecting software programs in place, which in turn is driving the growth of the financial fraud detection software market.

Restraints

Growing Incidents of False Positive Rates

False positive rates are incidents in which the program concludes legitimate transactions as fraudulent activities. The growing rate of such incidents is a major challenge for global industry players to tackle. Moreover, false-positive rates occur due to multiple human or mechanical errors like the input of wrong data, along with lack of context and integration, and several other types of human error in understanding. Furthermore, software programs are also highly prone to collapse under certain situations hampering the growth of the financial fraud detection software market.

High Implementation Cost

Implementing financial fraud detection software solutions requires substantial investments in terms of hardware, software, and personnel. This is a major deterrent for small and medium-sized banks and financial institutions, thus hindering their adoption of financial fraud detection software solutions. Financial fraud detection software is complex in nature, as it requires high level functions and integrations, thus leading to prohibitive costs standing between $36,000 and $75,000 and sometimes even higher than $150,000, in the case of complex applications with high level features. Hence, this factor is expected to hamper market growth. The major factors that are leading to higher costs are the implementation of software technology, data migration, bank size, and tech debt associated with digital service technology. Architectural design requirements are challenging as software architects and developers must migrate into micro-services with individual databases. Furthermore, the creation of an application programming interface (API) for communication between banking services with client-side and load balancers adds up to the cost of implementing banking software, thus restraining the market growth. Moreover, to modernize software changes, a tech-stack is quired, as a result ensuring compatibility of legacy components, while mitigating application to the cloud for data storage leads to compatibility issues, and fixing compatibility issues leads to higher cost, thus hindering the financial financial fraud detection software market growth.

Opportunities

Rising Innovations in the Fintech Industry

BFSI companies are increasing investment in machine learning and AI solutions to transform financial institutes’ management for providing enhanced services to the end users and to automate the necessary solutions. In addition, with rising complexity and competition in the BFSI market, the demand for industry-specific solutions increased to meet the goals of the companies and AI-based financial solutions are helping Fintech and other industries to enhance their security and upsurge their revenue opportunity, which is driving the growth of the market. For instance, in March 2021, IBM announced that it had launched a new fraud detection and prevention solution for the financial services industry. The solution, called IBM Financial Crimes Insight, is built on IBM Cloud Pak for Data and leverages advanced analytics, artificial intelligence, and machine learning technologies. The solution is designed to help financial institutions detect and prevent fraud across a range of channels, including mobile, web, and call centers. IBM Financial Crimes Insight offers real-time monitoring and analytics, enabling businesses to quickly respond to potential fraud attempts.

Furthermore, AI and machine learning assist financial institutes at various stages of the risk management process ranging from identifying risk exposure, measuring, and estimating, to assessing its effects. Moreover, increasing investments in AI and machine learning offer the potential to transform the area of automation for time-consuming, mundane processes, and offer a far more streamlined and personalized customer experience, which is enhancing the growth of the market. In addition, major financial institutes such as Bank of America, JPMorgan, and Morgan Stanley, are investing heavily in ML technologies to develop automated investment advisors and train systems to detect flags such as money laundering techniques and for other fraud cases, which in turn is expected to provide lucrative opportunity for the growth of the financial fraud detection software market.ll

Key Benefits for Stakeholders

  • This report provides a quantitative analysis of the market segments, current trends, estimations, and dynamics of the financial fraud detection software market analysis from 2023 to 2032 to identify the prevailing financial fraud detection software market opportunity.
  • The financial fraud detection software market outlook research is offered along with information related to key drivers, restraints, and opportunities.
  • Porter's five forces analysis highlights the potency of buyers and suppliers to enable stakeholders make profit-oriented business decisions and strengthen their supplier-buyer network.
  • In-depth analysis of the financial fraud detection software market segmentation assists to determine the prevailing market .
  • Major countries in each region are mapped according to their revenue contribution to the global financial fraud detection software market forecast.
  • Market player positioning facilitates benchmarking and provides a clear understanding of the present position of the financial fraud detection software market players.
  • The report includes the analysis of the regional as well as global financial fraud detection software market trends, key players, market segments, application areas, and financial fraud detection software market growth strategies.

Key Market Segments

  • By Component
    • Solution
    • Service
  • By Deployment Mode
    • On-premise
    • Cloud
  • By Fraud Type
    • Money Laundering
    • Identity Theft
    • Debit and Credit Card Frauds
    • Claim Frauds
    • Transfer Frauds
    • Others
  • By End User
    • Banks
    • NBFCs
    • Others
  • By Region
    • North America
      • U.S.
      • Canada
    • Europe
      • UK
      • Germany
      • France
      • Italy
      • Spain
      • Rest of Europe
    • Asia-Pacific
      • China
      • Japan
      • India
      • South Korea
      • Australia
      • Rest of Asia-Pacific
    • LAMEA
      • Latin America
      • Middle East
      • Africa


Key Market Players

  • Feedzai
  • Fiserv, Inc.
  • SAS Institute Inc.
  • IBM Corporation
  • Experian PLC
  • ThreatMetrix
  • Oracle Corporation
  • Software AG
  • SAP SE
  • FiCO
  • CHAPTER 1: INTRODUCTION

    • 1.1. Report description

    • 1.2. Key market segments

    • 1.3. Key benefits to the stakeholders

    • 1.4. Research methodology

      • 1.4.1. Primary research

      • 1.4.2. Secondary research

      • 1.4.3. Analyst tools and models

  • CHAPTER 2: EXECUTIVE SUMMARY

    • 2.1. CXO Perspective

  • CHAPTER 3: MARKET OVERVIEW

    • 3.1. Market definition and scope

    • 3.2. Key findings

      • 3.2.1. Top impacting factors

      • 3.2.2. Top investment pockets

    • 3.3. Porter’s five forces analysis

      • 3.3.1. Low bargaining power of suppliers

      • 3.3.2. Low threat of new entrants

      • 3.3.3. Low threat of substitutes

      • 3.3.4. Low intensity of rivalry

      • 3.3.5. Low bargaining power of buyers

    • 3.4. Market dynamics

      • 3.4.1. Drivers

        • 3.4.1.1. Increase in use of digital transformation technology
        • 3.4.1.2. Growing adoption of online banking applications and mobile banking services
        • 3.4.1.3. Increasing incidences of financial fraud
      • 3.4.2. Restraints

        • 3.4.2.1. Growing incidents of false positive rates
        • 3.4.2.2. High implementation cost
      • 3.4.3. Opportunities

        • 3.4.3.1. Rising Innovations in the Fintech Industry
  • CHAPTER 4: FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT

    • 4.1. Overview

      • 4.1.1. Market size and forecast

    • 4.2. Solution

      • 4.2.1. Key market trends, growth factors and opportunities

      • 4.2.2. Market size and forecast, by region

      • 4.2.3. Market share analysis by country

    • 4.3. Service

      • 4.3.1. Key market trends, growth factors and opportunities

      • 4.3.2. Market size and forecast, by region

      • 4.3.3. Market share analysis by country

  • CHAPTER 5: FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE

    • 5.1. Overview

      • 5.1.1. Market size and forecast

    • 5.2. On-premise

      • 5.2.1. Key market trends, growth factors and opportunities

      • 5.2.2. Market size and forecast, by region

      • 5.2.3. Market share analysis by country

    • 5.3. Cloud

      • 5.3.1. Key market trends, growth factors and opportunities

      • 5.3.2. Market size and forecast, by region

      • 5.3.3. Market share analysis by country

  • CHAPTER 6: FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE

    • 6.1. Overview

      • 6.1.1. Market size and forecast

    • 6.2. Money Laundering

      • 6.2.1. Key market trends, growth factors and opportunities

      • 6.2.2. Market size and forecast, by region

      • 6.2.3. Market share analysis by country

    • 6.3. Identity Theft

      • 6.3.1. Key market trends, growth factors and opportunities

      • 6.3.2. Market size and forecast, by region

      • 6.3.3. Market share analysis by country

    • 6.4. Debit and Credit Card Frauds

      • 6.4.1. Key market trends, growth factors and opportunities

      • 6.4.2. Market size and forecast, by region

      • 6.4.3. Market share analysis by country

    • 6.5. Claim Frauds

      • 6.5.1. Key market trends, growth factors and opportunities

      • 6.5.2. Market size and forecast, by region

      • 6.5.3. Market share analysis by country

    • 6.6. Transfer Frauds

      • 6.6.1. Key market trends, growth factors and opportunities

      • 6.6.2. Market size and forecast, by region

      • 6.6.3. Market share analysis by country

    • 6.7. Others

      • 6.7.1. Key market trends, growth factors and opportunities

      • 6.7.2. Market size and forecast, by region

      • 6.7.3. Market share analysis by country

  • CHAPTER 7: FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER

    • 7.1. Overview

      • 7.1.1. Market size and forecast

    • 7.2. Banks

      • 7.2.1. Key market trends, growth factors and opportunities

      • 7.2.2. Market size and forecast, by region

      • 7.2.3. Market share analysis by country

    • 7.3. NBFCs

      • 7.3.1. Key market trends, growth factors and opportunities

      • 7.3.2. Market size and forecast, by region

      • 7.3.3. Market share analysis by country

    • 7.4. Others

      • 7.4.1. Key market trends, growth factors and opportunities

      • 7.4.2. Market size and forecast, by region

      • 7.4.3. Market share analysis by country

  • CHAPTER 8: FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY REGION

    • 8.1. Overview

      • 8.1.1. Market size and forecast By Region

    • 8.2. North America

      • 8.2.1. Key market trends, growth factors and opportunities

      • 8.2.2. Market size and forecast, by Component

      • 8.2.3. Market size and forecast, by Deployment Mode

      • 8.2.4. Market size and forecast, by Fraud Type

      • 8.2.5. Market size and forecast, by End User

      • 8.2.6. Market size and forecast, by country

        • 8.2.6.1. U.S.
          • 8.2.6.1.1. Market size and forecast, by Component
          • 8.2.6.1.2. Market size and forecast, by Deployment Mode
          • 8.2.6.1.3. Market size and forecast, by Fraud Type
          • 8.2.6.1.4. Market size and forecast, by End User
        • 8.2.6.2. Canada
          • 8.2.6.2.1. Market size and forecast, by Component
          • 8.2.6.2.2. Market size and forecast, by Deployment Mode
          • 8.2.6.2.3. Market size and forecast, by Fraud Type
          • 8.2.6.2.4. Market size and forecast, by End User
    • 8.3. Europe

      • 8.3.1. Key market trends, growth factors and opportunities

      • 8.3.2. Market size and forecast, by Component

      • 8.3.3. Market size and forecast, by Deployment Mode

      • 8.3.4. Market size and forecast, by Fraud Type

      • 8.3.5. Market size and forecast, by End User

      • 8.3.6. Market size and forecast, by country

        • 8.3.6.1. UK
          • 8.3.6.1.1. Market size and forecast, by Component
          • 8.3.6.1.2. Market size and forecast, by Deployment Mode
          • 8.3.6.1.3. Market size and forecast, by Fraud Type
          • 8.3.6.1.4. Market size and forecast, by End User
        • 8.3.6.2. Germany
          • 8.3.6.2.1. Market size and forecast, by Component
          • 8.3.6.2.2. Market size and forecast, by Deployment Mode
          • 8.3.6.2.3. Market size and forecast, by Fraud Type
          • 8.3.6.2.4. Market size and forecast, by End User
        • 8.3.6.3. France
          • 8.3.6.3.1. Market size and forecast, by Component
          • 8.3.6.3.2. Market size and forecast, by Deployment Mode
          • 8.3.6.3.3. Market size and forecast, by Fraud Type
          • 8.3.6.3.4. Market size and forecast, by End User
        • 8.3.6.4. Italy
          • 8.3.6.4.1. Market size and forecast, by Component
          • 8.3.6.4.2. Market size and forecast, by Deployment Mode
          • 8.3.6.4.3. Market size and forecast, by Fraud Type
          • 8.3.6.4.4. Market size and forecast, by End User
        • 8.3.6.5. Spain
          • 8.3.6.5.1. Market size and forecast, by Component
          • 8.3.6.5.2. Market size and forecast, by Deployment Mode
          • 8.3.6.5.3. Market size and forecast, by Fraud Type
          • 8.3.6.5.4. Market size and forecast, by End User
        • 8.3.6.6. Rest of Europe
          • 8.3.6.6.1. Market size and forecast, by Component
          • 8.3.6.6.2. Market size and forecast, by Deployment Mode
          • 8.3.6.6.3. Market size and forecast, by Fraud Type
          • 8.3.6.6.4. Market size and forecast, by End User
    • 8.4. Asia-Pacific

      • 8.4.1. Key market trends, growth factors and opportunities

      • 8.4.2. Market size and forecast, by Component

      • 8.4.3. Market size and forecast, by Deployment Mode

      • 8.4.4. Market size and forecast, by Fraud Type

      • 8.4.5. Market size and forecast, by End User

      • 8.4.6. Market size and forecast, by country

        • 8.4.6.1. China
          • 8.4.6.1.1. Market size and forecast, by Component
          • 8.4.6.1.2. Market size and forecast, by Deployment Mode
          • 8.4.6.1.3. Market size and forecast, by Fraud Type
          • 8.4.6.1.4. Market size and forecast, by End User
        • 8.4.6.2. Japan
          • 8.4.6.2.1. Market size and forecast, by Component
          • 8.4.6.2.2. Market size and forecast, by Deployment Mode
          • 8.4.6.2.3. Market size and forecast, by Fraud Type
          • 8.4.6.2.4. Market size and forecast, by End User
        • 8.4.6.3. India
          • 8.4.6.3.1. Market size and forecast, by Component
          • 8.4.6.3.2. Market size and forecast, by Deployment Mode
          • 8.4.6.3.3. Market size and forecast, by Fraud Type
          • 8.4.6.3.4. Market size and forecast, by End User
        • 8.4.6.4. South Korea
          • 8.4.6.4.1. Market size and forecast, by Component
          • 8.4.6.4.2. Market size and forecast, by Deployment Mode
          • 8.4.6.4.3. Market size and forecast, by Fraud Type
          • 8.4.6.4.4. Market size and forecast, by End User
        • 8.4.6.5. Australia
          • 8.4.6.5.1. Market size and forecast, by Component
          • 8.4.6.5.2. Market size and forecast, by Deployment Mode
          • 8.4.6.5.3. Market size and forecast, by Fraud Type
          • 8.4.6.5.4. Market size and forecast, by End User
        • 8.4.6.6. Rest of Asia-Pacific
          • 8.4.6.6.1. Market size and forecast, by Component
          • 8.4.6.6.2. Market size and forecast, by Deployment Mode
          • 8.4.6.6.3. Market size and forecast, by Fraud Type
          • 8.4.6.6.4. Market size and forecast, by End User
    • 8.5. LAMEA

      • 8.5.1. Key market trends, growth factors and opportunities

      • 8.5.2. Market size and forecast, by Component

      • 8.5.3. Market size and forecast, by Deployment Mode

      • 8.5.4. Market size and forecast, by Fraud Type

      • 8.5.5. Market size and forecast, by End User

      • 8.5.6. Market size and forecast, by country

        • 8.5.6.1. Latin America
          • 8.5.6.1.1. Market size and forecast, by Component
          • 8.5.6.1.2. Market size and forecast, by Deployment Mode
          • 8.5.6.1.3. Market size and forecast, by Fraud Type
          • 8.5.6.1.4. Market size and forecast, by End User
        • 8.5.6.2. Middle East
          • 8.5.6.2.1. Market size and forecast, by Component
          • 8.5.6.2.2. Market size and forecast, by Deployment Mode
          • 8.5.6.2.3. Market size and forecast, by Fraud Type
          • 8.5.6.2.4. Market size and forecast, by End User
        • 8.5.6.3. Africa
          • 8.5.6.3.1. Market size and forecast, by Component
          • 8.5.6.3.2. Market size and forecast, by Deployment Mode
          • 8.5.6.3.3. Market size and forecast, by Fraud Type
          • 8.5.6.3.4. Market size and forecast, by End User
  • CHAPTER 9: COMPETITIVE LANDSCAPE

    • 9.1. Introduction

    • 9.2. Top winning strategies

    • 9.3. Product mapping of top 10 player

    • 9.4. Competitive dashboard

    • 9.5. Competitive heatmap

    • 9.6. Top player positioning, 2022

  • CHAPTER 10: COMPANY PROFILES

    • 10.1. Feedzai

      • 10.1.1. Company overview

      • 10.1.2. Key executives

      • 10.1.3. Company snapshot

      • 10.1.4. Operating business segments

      • 10.1.5. Product portfolio

      • 10.1.6. Key strategic moves and developments

    • 10.2. FiCO

      • 10.2.1. Company overview

      • 10.2.2. Key executives

      • 10.2.3. Company snapshot

      • 10.2.4. Operating business segments

      • 10.2.5. Product portfolio

    • 10.3. Oracle Corporation

      • 10.3.1. Company overview

      • 10.3.2. Key executives

      • 10.3.3. Company snapshot

      • 10.3.4. Operating business segments

      • 10.3.5. Product portfolio

      • 10.3.6. Business performance

      • 10.3.7. Key strategic moves and developments

    • 10.4. ThreatMetrix

      • 10.4.1. Company overview

      • 10.4.2. Key executives

      • 10.4.3. Company snapshot

      • 10.4.4. Operating business segments

      • 10.4.5. Product portfolio

    • 10.5. SAS Institute Inc.

      • 10.5.1. Company overview

      • 10.5.2. Key executives

      • 10.5.3. Company snapshot

      • 10.5.4. Operating business segments

      • 10.5.5. Product portfolio

      • 10.5.6. Key strategic moves and developments

    • 10.6. SAP SE

      • 10.6.1. Company overview

      • 10.6.2. Key executives

      • 10.6.3. Company snapshot

      • 10.6.4. Operating business segments

      • 10.6.5. Product portfolio

      • 10.6.6. Business performance

      • 10.6.7. Key strategic moves and developments

    • 10.7. Fiserv, Inc.

      • 10.7.1. Company overview

      • 10.7.2. Key executives

      • 10.7.3. Company snapshot

      • 10.7.4. Operating business segments

      • 10.7.5. Product portfolio

      • 10.7.6. Business performance

      • 10.7.7. Key strategic moves and developments

    • 10.8. IBM Corporation

      • 10.8.1. Company overview

      • 10.8.2. Key executives

      • 10.8.3. Company snapshot

      • 10.8.4. Operating business segments

      • 10.8.5. Product portfolio

      • 10.8.6. Business performance

    • 10.9. Software AG

      • 10.9.1. Company overview

      • 10.9.2. Key executives

      • 10.9.3. Company snapshot

      • 10.9.4. Operating business segments

      • 10.9.5. Product portfolio

    • 10.10. Experian PLC

      • 10.10.1. Company overview

      • 10.10.2. Key executives

      • 10.10.3. Company snapshot

      • 10.10.4. Operating business segments

      • 10.10.5. Product portfolio

      • 10.10.6. Key strategic moves and developments

  • LIST OF TABLES

  • TABLE 01. GLOBAL FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 02. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR SOLUTION, BY REGION, 2022-2032 ($MILLION)
    TABLE 03. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR SERVICE, BY REGION, 2022-2032 ($MILLION)
    TABLE 04. GLOBAL FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 05. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR ON-PREMISE, BY REGION, 2022-2032 ($MILLION)
    TABLE 06. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR CLOUD, BY REGION, 2022-2032 ($MILLION)
    TABLE 07. GLOBAL FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 08. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR MONEY LAUNDERING, BY REGION, 2022-2032 ($MILLION)
    TABLE 09. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR IDENTITY THEFT, BY REGION, 2022-2032 ($MILLION)
    TABLE 10. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR DEBIT AND CREDIT CARD FRAUDS, BY REGION, 2022-2032 ($MILLION)
    TABLE 11. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR CLAIM FRAUDS, BY REGION, 2022-2032 ($MILLION)
    TABLE 12. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR TRANSFER FRAUDS, BY REGION, 2022-2032 ($MILLION)
    TABLE 13. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR OTHERS, BY REGION, 2022-2032 ($MILLION)
    TABLE 14. GLOBAL FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 15. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR BANKS, BY REGION, 2022-2032 ($MILLION)
    TABLE 16. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR NBFCS, BY REGION, 2022-2032 ($MILLION)
    TABLE 17. FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR OTHERS, BY REGION, 2022-2032 ($MILLION)
    TABLE 18. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY REGION, 2022-2032 ($MILLION)
    TABLE 19. NORTH AMERICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 20. NORTH AMERICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 21. NORTH AMERICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 22. NORTH AMERICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 23. NORTH AMERICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 24. U.S. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 25. U.S. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 26. U.S. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 27. U.S. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 28. CANADA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 29. CANADA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 30. CANADA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 31. CANADA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 32. EUROPE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 33. EUROPE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 34. EUROPE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 35. EUROPE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 36. EUROPE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 37. UK FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 38. UK FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 39. UK FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 40. UK FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 41. GERMANY FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 42. GERMANY FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 43. GERMANY FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 44. GERMANY FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 45. FRANCE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 46. FRANCE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 47. FRANCE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 48. FRANCE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 49. ITALY FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 50. ITALY FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 51. ITALY FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 52. ITALY FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 53. SPAIN FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 54. SPAIN FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 55. SPAIN FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 56. SPAIN FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 57. REST OF EUROPE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 58. REST OF EUROPE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 59. REST OF EUROPE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 60. REST OF EUROPE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 61. ASIA-PACIFIC FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 62. ASIA-PACIFIC FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 63. ASIA-PACIFIC FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 64. ASIA-PACIFIC FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 65. ASIA-PACIFIC FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 66. CHINA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 67. CHINA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 68. CHINA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 69. CHINA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 70. JAPAN FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 71. JAPAN FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 72. JAPAN FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 73. JAPAN FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 74. INDIA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 75. INDIA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 76. INDIA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 77. INDIA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 78. SOUTH KOREA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 79. SOUTH KOREA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 80. SOUTH KOREA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 81. SOUTH KOREA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 82. AUSTRALIA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 83. AUSTRALIA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 84. AUSTRALIA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 85. AUSTRALIA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 86. REST OF ASIA-PACIFIC FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 87. REST OF ASIA-PACIFIC FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 88. REST OF ASIA-PACIFIC FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 89. REST OF ASIA-PACIFIC FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 90. LAMEA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 91. LAMEA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 92. LAMEA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 93. LAMEA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 94. LAMEA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 95. LATIN AMERICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 96. LATIN AMERICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 97. LATIN AMERICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 98. LATIN AMERICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 99. MIDDLE EAST FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 100. MIDDLE EAST FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 101. MIDDLE EAST FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 102. MIDDLE EAST FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 103. AFRICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 104. AFRICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022-2032 ($MILLION)
    TABLE 105. AFRICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022-2032 ($MILLION)
    TABLE 106. AFRICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 107. FEEDZAI: KEY EXECUTIVES
    TABLE 108. FEEDZAI: COMPANY SNAPSHOT
    TABLE 109. FEEDZAI: SERVICE SEGMENTS
    TABLE 110. FEEDZAI: PRODUCT PORTFOLIO
    TABLE 111. FEEDZAI: KEY STRATERGIES
    TABLE 112. FICO: KEY EXECUTIVES
    TABLE 113. FICO: COMPANY SNAPSHOT
    TABLE 114. FICO: SERVICE SEGMENTS
    TABLE 115. FICO: PRODUCT PORTFOLIO
    TABLE 116. ORACLE CORPORATION: KEY EXECUTIVES
    TABLE 117. ORACLE CORPORATION: COMPANY SNAPSHOT
    TABLE 118. ORACLE CORPORATION: SERVICE SEGMENTS
    TABLE 119. ORACLE CORPORATION: PRODUCT PORTFOLIO
    TABLE 120. ORACLE CORPORATION: KEY STRATERGIES
    TABLE 121. THREATMETRIX: KEY EXECUTIVES
    TABLE 122. THREATMETRIX: COMPANY SNAPSHOT
    TABLE 123. THREATMETRIX: SERVICE SEGMENTS
    TABLE 124. THREATMETRIX: PRODUCT PORTFOLIO
    TABLE 125. SAS INSTITUTE INC.: KEY EXECUTIVES
    TABLE 126. SAS INSTITUTE INC.: COMPANY SNAPSHOT
    TABLE 127. SAS INSTITUTE INC.: PRODUCT SEGMENTS
    TABLE 128. SAS INSTITUTE INC.: PRODUCT PORTFOLIO
    TABLE 129. SAS INSTITUTE INC.: KEY STRATERGIES
    TABLE 130. SAP SE: KEY EXECUTIVES
    TABLE 131. SAP SE: COMPANY SNAPSHOT
    TABLE 132. SAP SE: SERVICE SEGMENTS
    TABLE 133. SAP SE: PRODUCT PORTFOLIO
    TABLE 134. SAP SE: KEY STRATERGIES
    TABLE 135. FISERV, INC.: KEY EXECUTIVES
    TABLE 136. FISERV, INC.: COMPANY SNAPSHOT
    TABLE 137. FISERV, INC.: SERVICE SEGMENTS
    TABLE 138. FISERV, INC.: PRODUCT PORTFOLIO
    TABLE 139. FISERV, INC.: KEY STRATERGIES
    TABLE 140. IBM CORPORATION: KEY EXECUTIVES
    TABLE 141. IBM CORPORATION: COMPANY SNAPSHOT
    TABLE 142. IBM CORPORATION: SERVICE SEGMENTS
    TABLE 143. IBM CORPORATION: PRODUCT PORTFOLIO
    TABLE 144. SOFTWARE AG: KEY EXECUTIVES
    TABLE 145. SOFTWARE AG: COMPANY SNAPSHOT
    TABLE 146. SOFTWARE AG: SERVICE SEGMENTS
    TABLE 147. SOFTWARE AG: PRODUCT PORTFOLIO
    TABLE 148. EXPERIAN PLC: KEY EXECUTIVES
    TABLE 149. EXPERIAN PLC: COMPANY SNAPSHOT
    TABLE 150. EXPERIAN PLC: SERVICE SEGMENTS
    TABLE 151. EXPERIAN PLC: PRODUCT PORTFOLIO
    TABLE 152. EXPERIAN PLC: KEY STRATERGIES
  • LIST OF FIGURES

  • FIGURE 01. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032
    FIGURE 02. SEGMENTATION OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET,2022-2032
    FIGURE 03. TOP IMPACTING FACTORS IN FINANCIAL FRAUD DETECTION SOFTWARE MARKET (2022 TO 2032)
    FIGURE 04. TOP INVESTMENT POCKETS IN FINANCIAL FRAUD DETECTION SOFTWARE MARKET (2023-2032)
    FIGURE 05. LOW BARGAINING POWER OF SUPPLIERS
    FIGURE 06. LOW THREAT OF NEW ENTRANTS
    FIGURE 07. LOW THREAT OF SUBSTITUTES
    FIGURE 08. LOW INTENSITY OF RIVALRY
    FIGURE 09. LOW BARGAINING POWER OF BUYERS
    FIGURE 10. GLOBAL FINANCIAL FRAUD DETECTION SOFTWARE MARKET:DRIVERS, RESTRAINTS AND OPPORTUNITIES
    FIGURE 11. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY COMPONENT, 2022 AND 2032(%)
    FIGURE 12. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR SOLUTION, BY COUNTRY 2022 AND 2032(%)
    FIGURE 13. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR SERVICE, BY COUNTRY 2022 AND 2032(%)
    FIGURE 14. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY DEPLOYMENT MODE, 2022 AND 2032(%)
    FIGURE 15. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR ON-PREMISE, BY COUNTRY 2022 AND 2032(%)
    FIGURE 16. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR CLOUD, BY COUNTRY 2022 AND 2032(%)
    FIGURE 17. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY FRAUD TYPE, 2022 AND 2032(%)
    FIGURE 18. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR MONEY LAUNDERING, BY COUNTRY 2022 AND 2032(%)
    FIGURE 19. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR IDENTITY THEFT, BY COUNTRY 2022 AND 2032(%)
    FIGURE 20. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR DEBIT AND CREDIT CARD FRAUDS, BY COUNTRY 2022 AND 2032(%)
    FIGURE 21. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR CLAIM FRAUDS, BY COUNTRY 2022 AND 2032(%)
    FIGURE 22. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR TRANSFER FRAUDS, BY COUNTRY 2022 AND 2032(%)
    FIGURE 23. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR OTHERS, BY COUNTRY 2022 AND 2032(%)
    FIGURE 24. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, BY END USER, 2022 AND 2032(%)
    FIGURE 25. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR BANKS, BY COUNTRY 2022 AND 2032(%)
    FIGURE 26. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR NBFCS, BY COUNTRY 2022 AND 2032(%)
    FIGURE 27. COMPARATIVE SHARE ANALYSIS OF FINANCIAL FRAUD DETECTION SOFTWARE MARKET FOR OTHERS, BY COUNTRY 2022 AND 2032(%)
    FIGURE 28. FINANCIAL FRAUD DETECTION SOFTWARE MARKET BY REGION, 2022 AND 2032(%)
    FIGURE 29. U.S. FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 30. CANADA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 31. UK FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 32. GERMANY FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 33. FRANCE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 34. ITALY FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 35. SPAIN FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 36. REST OF EUROPE FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 37. CHINA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 38. JAPAN FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 39. INDIA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 40. SOUTH KOREA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 41. AUSTRALIA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 42. REST OF ASIA-PACIFIC FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 43. LATIN AMERICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 44. MIDDLE EAST FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 45. AFRICA FINANCIAL FRAUD DETECTION SOFTWARE MARKET, 2022-2032 ($MILLION)
    FIGURE 46. TOP WINNING STRATEGIES, BY YEAR (2019-2023)
    FIGURE 47. TOP WINNING STRATEGIES, BY DEVELOPMENT (2019-2023)
    FIGURE 48. TOP WINNING STRATEGIES, BY COMPANY (2019-2023)
    FIGURE 49. PRODUCT MAPPING OF TOP 10 PLAYERS
    FIGURE 50. COMPETITIVE DASHBOARD
    FIGURE 51. COMPETITIVE HEATMAP: FINANCIAL FRAUD DETECTION SOFTWARE MARKET
    FIGURE 52. TOP PLAYER POSITIONING, 2022
    FIGURE 53. ORACLE CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 54. ORACLE CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 55. ORACLE CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 56. ORACLE CORPORATION: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 57. SAP SE: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 58. SAP SE: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 59. SAP SE: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 60. SAP SE: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 61. FISERV, INC.: SALES REVENUE, 2020-2022 ($MILLION)
    FIGURE 62. FISERV, INC.: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 63. IBM CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 64. IBM CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 65. IBM CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 66. IBM CORPORATION: REVENUE SHARE BY REGION, 2022 (%)

Purchase Full Report of
Financial Fraud Detection Software Market

PURCHASE OPTIONS



* Taxes/Fees, If applicable will be added during checkout. All prices in USD.

Have a question ?

Need to add more ?

Avail up to 30% discount on subscription plans on


Avenue