Categories
Life Sciences Consumer Goods Materials and Chemicals Construction & Manufacturing Food and Beverages Energy and Power Semiconductor and Electronics Automotive and Transportation ICT & Media Aerospace & Defense BFSI

Int'l : +1-503-894-6022 | Toll Free : +1-800-792-5285 | help@alliedmarketresearch.com

Generative AI Market by Component (Software, Service), by Technology (Generative Adversarial Networks (GANs), Transformer, Variational Autoencoder (VAE), Diffusion Networks, Retrieval Augmented Generation), by End User (Media and Entertainment, BFSI, IT and Telecom, Healthcare, Automotive and Transportation, Others): Global Opportunity Analysis and Industry Forecast, 2023-2032

A47396

Pages: 296

Charts: 69

Tables: 134

Generative AI Market Insights, 2032

The global generative AI market size was valued at USD 10.5 billion in 2022, and is projected to reach USD 191.8 billion by 2032, growing at a CAGR of 34.1% from 2023 to 2032. 

The growth in demand for AI-generated content has been a significant driver for the generative AI market growth. With AI-generated content, companies and individuals can create massive amounts of content quickly and at scale. This efficiency is especially valuable in industries such as marketing and advertising, where personalization and variety of content is critical to effectively engaging audiences. Moreover, AI can personalize content based on individual preferences, making it more engaging and relevant to users. Furthermore, the advancements in deep learning and desire to provide users and consumers with more personalized, engaging and relevant content and experiences are also driving the gen AI market. However, training complex gen AI models can be a time-consuming process.

Generative AI refers to the branch of artificial intelligence focused on creating or generating new content such as original and realistic images, text, music, and videos. This involves training machine learning models to understand and learn patterns in existing data to generate new and unique content. Generative AI techniques often use deep learning algorithms such as generative adversarial networks (GANs) and variational auto-encoders (VAEs) to generate content that closely resembles input data. These models learn the underlying patterns and structures of the training data and generate new content based on extrapolation of knowledge.

Depending on model size and complexity, training can take days, weeks, or even longer. This increased learning curve could delay the deployment of AI systems and affect a company's ability to respond quickly to market demands. Therefore, such factors are limiting the growth of the gen AI industry. On the contrary, the demand for generative AI applications in industries such as entertainment, healthcare, engineering, finance, and defense is driven by the growing use of innovative solutions such as super-resolution, text-to-image conversion, and text-to-video conversion. Moreover, the growing application of artificial intelligence is a result of its increased computing power and ability to solve problems in different industrial sectors. Expanding into these industries will provide major lucrative opportunities for the growth of the generative AI market.

The generative AI market insights provide significant surge, marked by rapid advancements and transformative shifts that promise to reshape various industries. At the core of this revolution are several pivotal trends that catalyze the growth and adoption of AI technologies. One of the most noteworthy trends is the enhanced sophistication of AI models, especially in the realms of natural language processing (NLP) and deep learning. These advancements have paved the way for the generation of highly accurate textual, pictorial, and video content. As these technologies evolve, they enable more nuanced and complex applications, ranging from automated content creation to sophisticated decision-making tools.

Simultaneously, the emergence of AI-as-a-Service (AIaaS) platforms is democratizing access to generative AI technologies. By offering these capabilities as services, these platforms reduce the barrier to entry for businesses of all sizes, fostering a more inclusive environment for innovation. Small and medium enterprises, previously hindered by resource constraints, can now leverage advanced AI tools, leveling the playing field against larger corporations.

For instance, on September 10, 2024 , Deloitte has launched an AI Factory as a Service (AI FaaS) in collaboration with NVIDIA and Oracle. This service aims to help organizations accelerate their AI initiatives by providing a comprehensive suite of tools and resources. The AI Factory leverages NVIDIA's AI hardware and software capabilities, along with Oracle's cloud infrastructure, to offer scalable and efficient AI solutions. This initiative is part of the broader generative AI market research, which is rapidly expanding and expected to contribute significantly to global economic productivity. By offering AI FaaS, Deloitte aims to support businesses in deploying AI technologies more effectively and efficiently

Ethical considerations and regulatory frameworks are also gaining prominence alongside the capabilities of generative AI. With great power comes great responsibility, and as such, there is an increasing focus on issues such as data privacy, intellectual property rights, and the potential for misuse. These ethical debates are prompting policymakers and industry leaders to establish guidelines and standards that ensure the responsible use of AI technologies.

The generative AI market report highlights several trends, several strategic movements within the industry highlight the dynamic nature of the generative AI market. For example, in April 2024, the U.S. General Services Administration launched its Generative AI and Specialized Computing Infrastructure Acquisition Resource Guide. This guide, which is regularly updated to reflect technological advancements, aims to assist the federal acquisition community in procuring generative AI solutions and related specialized computing infrastructure. This initiative not only supports governmental operations but also sets a precedent for other sectors to follow in harnessing the potential of generative AI responsibly.

In a similar vein, corporate collaborations are playing a pivotal role in accelerating the application of generative AI. In May 2024, IBM partnered with SAP SE to enable clients to expedite their journey towards becoming next-generation enterprises by integrating generative AI into their operations. This partnership underscores the strategic importance of collaborative ventures in driving technological adoption and achieving competitive advantages.

For instance, on March 24, 2025, Qualcomm partnered with IBM to scale enterprise-grade generative AI solutions from edge to cloud1. This collaboration aims to integrate IBM's watsonx.governance and Granite models with Qualcomm's AI Inference Suite and AI Hub. The goal is to provide businesses with AI solutions that enhance immediacy, privacy, reliability, personalization, and reduce cost and energy consumption.

Moreover, another significant collaboration occurred in May 2024, when Wipro teamed up with Microsoft to launch a suite of cognitive assistants for the financial services industry, powered by generative AI. These include Wipro GenAI Investor Intelligence, Wipro GenAI Investor Onboarding, and Wipro GenAI Loan Origination. These tools are designed to enhance the efficiency and effectiveness of financial services, showcasing the practical applications of generative AI in transforming business operations.

As the generative AI market continues value continues to evolve, it is clear that the convergence of technological advancement, ethical governance, and strategic partnerships will shape the future landscape of industries. This dynamic interplay ensures not only the growth of generative AI but also its sustainable and ethical integration into the global economy.

The report focuses on growth prospects, restraints, and trends of the generative AI market analysis. The study provides Porter’s five forces analysis to understand the impact of various factors, such as bargaining power of suppliers, competitive intensity of competitors, threat of new entrants, threat of substitutes, and bargaining power of buyers, on the generative AI market size.

Top Impacting Factors:

Advancements in Deep Learning

The continuous advancements in deep learning have been a key driver for the growth of the generative AI market. Deep learning algorithms, especially those based on Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), have revolutionized the field of generative modeling. GANs have been particularly instrumental in generating realistic and high-quality synthetic data. VAEs, on the other hand, have enabled the creation of latent spaces that facilitate smooth interpolation between data points, allowing for seamless generation of diverse outputs.

Moreover, researchers and developers have made significant progress in refining these algorithms, optimizing model architectures, and introducing new techniques to stabilize training and enhance the quality of generated content. As deep learning continues to evolve, the capabilities of gen AI models are expected to improve further, leading to even more impressive and realistic results.

For instance, on October 15, 2024, Amazon Ads introduced new generative AI tools to help advertisers create more engaging content. The AI creative studio and Audio generator are designed to lower creative barriers and expand opportunities for advertisers1. These tools allow advertisers to easily generate high-quality images, videos, and audio content, making it simpler to update and tailor ads for different use cases. The AI creative studio brings together Amazon Ads' AI-powered image and video generation capabilities, enabling advertisers to conceptualize, create, and refresh content easily. This innovation aims to enhance the overall customer experience by making ads more dynamic and engaging.

Growing Demand for AI-generated Content

The rising demand for AI-generated content across various industries has been a driving the expansion of the generative AI market. In sectors such as media and entertainment, gaming, and advertising, there is a constant need for fresh and engaging content to captivate audiences and consumers. Generative AI technologies offer a scalable and efficient solution to meet this demand by automatically producing content, including images, videos, music, and even text. For instance, in the gaming industry, generative AI can be used to generate game levels, characters, and assets, thereby reducing the burden on human designers and enhancing the variety and replay ability of games.

In digital marketing, AI-generated personalized advertisements can cater to specific customer preferences, leading to higher conversion rates. As companies seek ways to optimize content creation and cater to individual preferences, the adoption of generative AI is expected to witness substantial growth.

For instance, on October 15, 2024, Amazon Ads introduced new generative AI tools to help advertisers create more engaging content. The AI creative studio and Audio generator are designed to lower creative barriers and expand opportunities for advertisers1. These tools allow advertisers to easily generate high-quality images, videos, and audio content, making it simpler to update and tailor ads for different use cases. The AI creative studio brings together Amazon Ads' AI-powered image and video generation capabilities, enabling advertisers to conceptualize, create, and refresh content easily. This innovation aims to enhance the overall customer experience by making ads more dynamic and engaging.

Personalization and Customization Needs

The consumers expect personalized and tailored experiences from the products and services they engage with. Thus, generative AI plays a crucial role in fulfilling these personalization needs by creating content and products that resonate with individual preferences. Whether it is personalized product designs, recommendations, or even virtual avatars, generative AI can produce outputs uniquely suited to each user.

For instance, on September 24, 2024, PUMA partnered with Google Cloud to transform its product campaign development using generative AI. By leveraging Google Cloud's Imagen on Vertex AI, PUMA can create dynamic and personalized product imagery, improving click-through rates and accelerating the time-to-market for its digital campaigns. This technology allows PUMA to generate relevant imagery tailored to specific products, customers, and regions. This collaboration aimed to enhance the digital shopping experience for PUMA's consumers worldwide, making it more personalized and efficient.

In e-commerce, for instance, generative AI can be employed to design custom products based on customer specifications, leading to enhanced customer satisfaction and loyalty. Personalized content in social media feeds and news articles can increase user engagement and retention. As businesses recognize the value of personalization and the positive impact it has on customer experiences, the demand for generative AI technologies will likely continue to grow.

For instance, on July 16, 2024, Fujitsu partnered with Cohere Inc. to develop and provide generative AI solutions for enterprises. This collaboration will focus on creating a large language model (LLM) tailored for Japanese language capabilities, named "Takane" (tentative name)1. The AI model will be offered for private environments, such as private clouds, to ensure high security for enterprise data.

Ethical and Privacy Concerns

Despite the numerous benefits of gen AI, the technology also raises ethical concerns, particularly regarding the misuse of AI-generated content. The ability to create highly realistic deepfakes and manipulated media has significant implications for misinformation campaigns, identity theft, and damage to an individual's reputation or privacy. Addressing these concerns requires a multi-faceted approach, involving collaboration between technology developers, policymakers, and society at large. Implementing strict regulations, ethical guidelines, and responsible AI practices are essential to mitigate potential harms and maintain the trustworthiness of generative AI applications.

High Computational Complexity

Generative AI models, especially those based on deep learning architectures, are computationally intensive and resource-demanding. Training and running large-scale GANs or VAEs often require powerful GPUs or specialized hardware, making them inaccessible to organizations with limited computational resources. The high computational complexity presents a challenge for small and medium-sized enterprises and individual developers who may not have the financial means or infrastructure to invest in such hardware.

In addition, the energy consumption of training these models can be considerable, leading to environmental concerns. Thus, overcoming this restraint involves ongoing research into model optimization, efficient parallelization techniques, and cloud-based AI services that can make generative AI more accessible to a broader audience.

For instance, on April 23, 2024, The Coca-Cola Company and Microsoft have announced a five-year strategic partnership to accelerate cloud and generative AI initiatives1. This collaboration involves a $1.1 billion commitment from Coca-Cola to the Microsoft Cloud and its generative AI capabilities. The partnership aims to align Coca-Cola’s core technology strategy systemwide, enabling the adoption of cutting-edge technology and fostering innovation and productivity globally.

Integration of Generative AI in Industry-specific Applications

One of the most promising opportunities for the generative AI market lies in its integration into industry-specific applications. Different sectors can leverage the creative capabilities and personalization aspects of generative AI to solve unique challenges and create tailored solutions. In healthcare, generative AI can be utilized to generate synthetic medical images, enabling data augmentation for training machine learning models without compromising patient privacy. It can also assist in drug discovery by generating molecular structures with desired properties.

In architecture and design, generative AI can aid in creating optimized building designs based on specific criteria such as environmental factors and space utilization. The automotive industry can benefit from generative AI by generating designs for car components, enhancing aerodynamics, and improving overall vehicle performance. Therefore, as businesses and researchers recognize the potential of generative AI in their respective domains, it is expected to see a proliferation of specialized applications that cater to industry-specific needs, thus offering major lucrative opportunities for the generative AI industry.

Segment Review:

The generative AI market is segmented on the basis of component, technology, end user, and region. On the basis of component, the market is bifurcated into software and services. By technology, it is segmented into generative adversarial networks (GANs), transformer, variational autoencoder (VAE), diffusion networks, and retrieval augmented generation. On the basis of end user, it is classified into media & entertainment, BFSI, IT & telecom, healthcare, automotive & transportation, and others. On the basis of region, it is analyzed across North America, Europe, Asia-Pacific, and LAMEA.   

[TECHNOLOGYGRAPH]

By technology, the generative adversarial networks (GANs) segment accounted for the highest generative AI market share in the market in 2022. This can be attributed to the remarkable capabilities of GANs in generating highly realistic and diverse content. GANs operate on a competitive framework, where a generator network creates synthetic data, and a discriminator network evaluates its authenticity. Through continuous iterations and improvements, GANs have demonstrated unparalleled success in tasks such as image and video synthesis, natural language generation, and creative content creation. Their ability to produce high-quality outputs with a wide range of applications across industries has made GANs the technology of choice for many companies, leading to their significant market share.

For instance, on March 13, 2024, Amazon introduced a new generative AI feature to help sellers create high-quality product listings. This tool allows sellers to transform their existing product pages from other websites into rich product listings tailored for Amazon's store with minimal effort. By leveraging generative AI, sellers can generate compelling product titles, descriptions, and other details, improving the overall shopping experience for customers. This innovation is part of Amazon's broader strategy to enhance the efficiency and effectiveness of its selling partners, aligning with the growing generative AI market.

On the other hand, the retrieval augmented generation segment is expected to be the fastest-growing segment during the forecast period. This growth can be attributed to the increasing demand for more controllable and contextually relevant content generation. Retrieval augmented generation combines the power of retrieval models and generative models, allowing users to specify desired attributes or content from existing data, which the generative model then incorporates to create tailored outputs.

This technology finds applications in personalized content generation, recommendation systems, and interactive AI-driven interfaces. As businesses and users seek more interactive and customizable AI-generated content, retrieval augmented generation offers a compelling solution, driving its rapid growth in the generative artificial intelligence market.

Regional Review: 

[REGIONGRAPH]

By region, North America attained the highest generative AI market share in the market in 2022. This can be attributed to the rise in demand for pre-training models on large amounts of data and fine-tuning them for specific tasks. Furthermore, language models such as GPT-3 have been shown to be highly effective in tasks such as language translation, summarization, and text completion, and their use is expected to increase in various industries.

On the other hand, the Asia-Pacific region is forecasted to be the fastest-growing segment during the forecast period. This can be attributed due to fact that regional businesses have rapidly digitized, straining cloud networks & data centers, where the adoption of generative AI is helping the organization to enable civil society members to be aware of AI devices and applications, which is expected to boost the gen AI market in this region.

For instance, on March 21, 2025, Meta launched its generative AI assistant, Meta AI, in the European Union this week. Initially unveiled in the US in September 2023, Meta AI has been integrated across all of Meta's applications since April 2024. In the EU, the assistant would provide text-only responses to users' questions, unlike in the US where it also generates images. This launch is part of Meta's broader strategy to enhance user interactions and provide more personalized assistance across its platforms.

Regional Insights:

North America is one of the prominent regions for this generative AI market owing to rise in demand for pre-training models on large amounts of data and fine-tuning them for specific tasks. In addition, language models such as GPT-3 have shown to be highly effective in tasks such as language translation, summarization, and text completion, and their use is expected to increase in various industries. This in turn, is driving the market growth in North America. Growth in demand for GANs is being used in various applications such as image generation, super-resolution, and video synthesis is expected to continue to aid the North America generative AI market growth.

Moreover, generative is an area of active R&D in healthcare and biotechnology industry, such as, in drug discovery, personalized medicine, and medical imaging. This factor is expected to have a positive impact on the generative AI market growth across North America. Furthermore, growth in adoption of generative AI to train robots & autonomous systems to learn from their environment and adapt to new situations is expected to lead to new opportunities in this field. For instance, in May 2021, the U.S. Government launched a website to act as the central hub for the National AI Initiative, named as AI.gov, which will provide visitors with information & news on AI, with users able to access legislative & research updates on related technologies. This is expected to create growth opportunities for the generative AI market in North America.

The generative AI market in Asia-Pacific is analyzed across countries which include China, Japan, India, Australia, South Korea, and rest of Asia-Pacific. Growth in usage of generative AI in Asia-Pacific countries owing to the rapid adoption of generative AI models for NLP is becoming more advanced, and their use is expected to increase in various industries such as customer service, marketing, and finance. These are some of the major drivers for the market growth in Asia-Pacific. In addition, the regional businesses have rapidly digitized, straining cloud networks & data centers, where the adoption of generative AI is helping the organization to enable civil society members to be aware of AI devices and applications, which is expected to boost the  market in this region.

Generative AI Companies Profile in the Report:

The report analyzes the profiles of key players operating in the generative AI market such as Adobe, Amazon Web Services, Inc., D-ID, Genie AI Ltd., Google LLC, IBM Corporation, Microsoft Corporation, MOSTLY AI Inc., Rephrase.ai and Synthesia. These players have adopted various strategies to increase their market penetration and strengthen their position in the generative AI industry.   

Key Industry Developments:

March 2023 – OpenAI released GPT-4, a major advancement in the generative AI market. The new model showed improved language understanding, generating more accurate and coherent text. GPT-4's applications span multiple industries, including customer service, content creation, and automation, setting new benchmarks in AI capabilities.

May 2023 – Google integrated generative AI into its Workspace tools, including Gmail and Docs, allowing users to generate text drafts and summaries automatically. This move marked Google’s significant push into the generative AI market size, enhancing productivity and collaboration through AI-powered features in everyday applications.

April 2023 – Microsoft rolled out Copilot, an AI-powered assistant integrated into its Office 365 suite, as part of its broader strategy in the market. Copilot enables users to generate documents, emails, and reports automatically, streamlining tasks and boosting productivity across business environments.

November 2024  - Capgemini, Mistral AI, and Microsoft announced their collaboration to accelerate the adoption of generative AI technologies. This partnership aimed to expand Capgemini's Intelligent App Factory on Azure, integrating Mistral AI's advanced language models with Microsoft's cloud platform1. The collaboration focuses on providing scalable, efficient, and secure generative AI solutions tailored to meet the needs of various industries, including highly regulated ones.

July, 2024 - Fujitsu partnered with Cohere Inc. to develop and provide generative AI solutions for enterprises. This collaboration will focus on creating a large language model (LLM) tailored for Japanese language capabilities, named "Takane" (tentative name)1. The AI model will be offered for private environments, such as private clouds, to ensure high security for enterprise data.

Market Landscape and Trends:

The generative artificial intelligence market has witnessed significant growth and transformation in recent years, driven by technological advancements and changing consumer preferences. The gen AI market landscape saw a strong emphasis on improving user experiences through generative AI applications. In sectors such as gaming, entertainment, and design, AI-driven content and interactive experiences enhanced user engagement and creativity.

The demand for generative artificial intelligence applications is increasing across industries due to factors corresponding to the expanding applications of technologies such as super-resolution, text-to-image conversion, and text-to-video conversion, as well as the growing need to modernize workflow across firms.

The increasing volume of data and the need to extract meaningful insights from it have propelled the demand for AI-driven solutions. Generative AI algorithms have proven to be highly effective in analyzing complex datasets, identifying patterns, and generating valuable predictions. Moreover, the development of advanced generative models, such as Deep Convolutional GANs (DCGANs) and StyleGANs, led to remarkable progress in generating high-quality and realistic images and videos. This trend had significant implications for industries such as entertainment, gaming, and visual content creation.

In addition, gen AI is increasingly being used for automated content creation and curation. This trend had applications in various domains, including social media, marketing, and journalism, where AI-generated content could streamline processes and improve content relevance and engagement. Furthermore, artificial intelligence (AI) and data analytics are playing a significant role in shaping the generative AI market landscape. It enables early identification of potential malignancy to bring more effective treatment plans.

Apart from this, the elevating requirement for this technology to assist chatbots in enabling effective conversations and boosting customer satisfaction is often acting as another significant growth-inducing factor for the market growth. These major trends contribute to the ongoing transformation of the generative AI market share landscape.

For instance, on November 21, 2024,  Appier announced the integration of generative AI technology across its entire product suite to enhance advertising, personalization, and data solutions. This integration spans Appier's three major platforms: Advertising Cloud, Personalization Cloud, and Data Cloud. By leveraging advanced Large Language Model (LLM) technology, Appier aims to improve customer acquisition, retention, conversion, and data insights.

Key Benefits for Stakeholders:

  • This report provides a quantitative analysis of the market segments, current trends, estimations, and dynamics of the generative AI market forecast from 2022 to 2032 to identify the prevailing generative AI market opportunity.
  • Generative AI market research is offered along with information related to key drivers, restraints, and opportunities.
  • Porter's five forces analysis highlights the potency of buyers and suppliers to enable stakeholders to make profit-oriented business decisions and strengthen their supplier-buyer network.
  • In-depth analysis of the generative AI industry segmentation assists to determine the prevailing generative AI market opportunities.
  • Major countries in each region are mapped according to their revenue contribution to the global market.
  • Gen AI Market player positioning facilitates benchmarking and provides a clear understanding of the present position of the market players.
  • The report includes an analysis of the regional as well as global generative AI market trends, key players, market segments, application areas, and market growth strategies.

Key Market Segments

  • By Component
    • Software
    • Service
  • By Technology
    • Generative Adversarial Networks (GANs)
    • Transformer
    • Variational Autoencoder (VAE)
    • Diffusion Networks
    • Retrieval Augmented Generation
  • By End User
    • Media and Entertainment
    • BFSI
    • IT and Telecom
    • Healthcare
    • Automotive and Transportation
    • Others
  • By Region
    • North America
      • U.S.
      • Canada
    • Europe
      • UK
      • Germany
      • France
      • Italy
      • Spain
      • Rest of Europe
    • Asia-Pacific
      • China
      • Japan
      • India
      • Australia
      • South Korea
      • Rest of Asia-Pacific
    • LAMEA
      • Latin America
      • Middle East
      • Africa


Key Market Players

  • Microsoft Corporation
  • Amazon Web Services, Inc.
  • IBM Corporation
  • Adobe.
  • Google LLC
  • MOSTLY AI Inc.
  • D-ID
  • Synthesia
  • Genie AI Ltd.
  • Rephrase.ai
  • CHAPTER 1: INTRODUCTION

    • 1.1. Report description

    • 1.2. Key market segments

    • 1.3. Key benefits to the stakeholders

    • 1.4. Research Methodology

      • 1.4.1. Primary research

      • 1.4.2. Secondary research

      • 1.4.3. Analyst tools and models

  • CHAPTER 2: EXECUTIVE SUMMARY

    • 2.1. CXO Perspective

  • CHAPTER 3: MARKET OVERVIEW

    • 3.1. Market definition and scope

    • 3.2. Key findings

      • 3.2.1. Top impacting factors

      • 3.2.2. Top investment pockets

    • 3.3. Porter’s five forces analysis

      • 3.3.1. High to moderate bargaining power of suppliers

      • 3.3.2. High to moderate threat of new entrants

      • 3.3.3. Moderate to high threat of substitutes

      • 3.3.4. High to moderate intensity of rivalry

      • 3.3.5. High o moderate bargaining power of buyers

    • 3.4. Market dynamics

      • 3.4.1. Drivers

        • 3.4.1.1. Advancements in deep learning
        • 3.4.1.2. Growing demand for AI-generated content
        • 3.4.1.3. Personalization and customization needs

      • 3.4.2. Restraints

        • 3.4.2.1. Ethical and privacy concerns
        • 3.4.2.2. High computational complexity

      • 3.4.3. Opportunities

        • 3.4.3.1. Integration of generative AI in industry-specific applications

    • 3.5. COVID-19 Impact Analysis on the market

  • CHAPTER 4: GENERATIVE AI MARKET, BY COMPONENT

    • 4.1. Overview

      • 4.1.1. Market size and forecast

    • 4.2. Software

      • 4.2.1. Key market trends, growth factors and opportunities

      • 4.2.2. Market size and forecast, by region

      • 4.2.3. Market share analysis by country

    • 4.3. Service

      • 4.3.1. Key market trends, growth factors and opportunities

      • 4.3.2. Market size and forecast, by region

      • 4.3.3. Market share analysis by country

  • CHAPTER 5: GENERATIVE AI MARKET, BY TECHNOLOGY

    • 5.1. Overview

      • 5.1.1. Market size and forecast

    • 5.2. Generative Adversarial Networks (GANs)

      • 5.2.1. Key market trends, growth factors and opportunities

      • 5.2.2. Market size and forecast, by region

      • 5.2.3. Market share analysis by country

    • 5.3. Transformer

      • 5.3.1. Key market trends, growth factors and opportunities

      • 5.3.2. Market size and forecast, by region

      • 5.3.3. Market share analysis by country

    • 5.4. Variational Autoencoder (VAE)

      • 5.4.1. Key market trends, growth factors and opportunities

      • 5.4.2. Market size and forecast, by region

      • 5.4.3. Market share analysis by country

    • 5.5. Diffusion Networks

      • 5.5.1. Key market trends, growth factors and opportunities

      • 5.5.2. Market size and forecast, by region

      • 5.5.3. Market share analysis by country

    • 5.6. Retrieval Augmented Generation

      • 5.6.1. Key market trends, growth factors and opportunities

      • 5.6.2. Market size and forecast, by region

      • 5.6.3. Market share analysis by country

  • CHAPTER 6: GENERATIVE AI MARKET, BY END USER

    • 6.1. Overview

      • 6.1.1. Market size and forecast

    • 6.2. Media and Entertainment

      • 6.2.1. Key market trends, growth factors and opportunities

      • 6.2.2. Market size and forecast, by region

      • 6.2.3. Market share analysis by country

    • 6.3. BFSI

      • 6.3.1. Key market trends, growth factors and opportunities

      • 6.3.2. Market size and forecast, by region

      • 6.3.3. Market share analysis by country

    • 6.4. IT and Telecom

      • 6.4.1. Key market trends, growth factors and opportunities

      • 6.4.2. Market size and forecast, by region

      • 6.4.3. Market share analysis by country

    • 6.5. Healthcare

      • 6.5.1. Key market trends, growth factors and opportunities

      • 6.5.2. Market size and forecast, by region

      • 6.5.3. Market share analysis by country

    • 6.6. Automotive and Transportation

      • 6.6.1. Key market trends, growth factors and opportunities

      • 6.6.2. Market size and forecast, by region

      • 6.6.3. Market share analysis by country

    • 6.7. Others

      • 6.7.1. Key market trends, growth factors and opportunities

      • 6.7.2. Market size and forecast, by region

      • 6.7.3. Market share analysis by country

  • CHAPTER 7: GENERATIVE AI MARKET, BY REGION

    • 7.1. Overview

      • 7.1.1. Market size and forecast By Region

    • 7.2. North America

      • 7.2.1. Key trends and opportunities

      • 7.2.2. Market size and forecast, by Component

      • 7.2.3. Market size and forecast, by Technology

      • 7.2.4. Market size and forecast, by End User

      • 7.2.5. Market size and forecast, by country

        • 7.2.5.1. U.S.
          • 7.2.5.1.1. Key market trends, growth factors and opportunities
          • 7.2.5.1.2. Market size and forecast, by Component
          • 7.2.5.1.3. Market size and forecast, by Technology
          • 7.2.5.1.4. Market size and forecast, by End User
        • 7.2.5.2. Canada
          • 7.2.5.2.1. Key market trends, growth factors and opportunities
          • 7.2.5.2.2. Market size and forecast, by Component
          • 7.2.5.2.3. Market size and forecast, by Technology
          • 7.2.5.2.4. Market size and forecast, by End User
    • 7.3. Europe

      • 7.3.1. Key trends and opportunities

      • 7.3.2. Market size and forecast, by Component

      • 7.3.3. Market size and forecast, by Technology

      • 7.3.4. Market size and forecast, by End User

      • 7.3.5. Market size and forecast, by country

        • 7.3.5.1. UK
          • 7.3.5.1.1. Key market trends, growth factors and opportunities
          • 7.3.5.1.2. Market size and forecast, by Component
          • 7.3.5.1.3. Market size and forecast, by Technology
          • 7.3.5.1.4. Market size and forecast, by End User
        • 7.3.5.2. Germany
          • 7.3.5.2.1. Key market trends, growth factors and opportunities
          • 7.3.5.2.2. Market size and forecast, by Component
          • 7.3.5.2.3. Market size and forecast, by Technology
          • 7.3.5.2.4. Market size and forecast, by End User
        • 7.3.5.3. France
          • 7.3.5.3.1. Key market trends, growth factors and opportunities
          • 7.3.5.3.2. Market size and forecast, by Component
          • 7.3.5.3.3. Market size and forecast, by Technology
          • 7.3.5.3.4. Market size and forecast, by End User
        • 7.3.5.4. Italy
          • 7.3.5.4.1. Key market trends, growth factors and opportunities
          • 7.3.5.4.2. Market size and forecast, by Component
          • 7.3.5.4.3. Market size and forecast, by Technology
          • 7.3.5.4.4. Market size and forecast, by End User
        • 7.3.5.5. Spain
          • 7.3.5.5.1. Key market trends, growth factors and opportunities
          • 7.3.5.5.2. Market size and forecast, by Component
          • 7.3.5.5.3. Market size and forecast, by Technology
          • 7.3.5.5.4. Market size and forecast, by End User
        • 7.3.5.6. Rest of Europe
          • 7.3.5.6.1. Key market trends, growth factors and opportunities
          • 7.3.5.6.2. Market size and forecast, by Component
          • 7.3.5.6.3. Market size and forecast, by Technology
          • 7.3.5.6.4. Market size and forecast, by End User
    • 7.4. Asia-Pacific

      • 7.4.1. Key trends and opportunities

      • 7.4.2. Market size and forecast, by Component

      • 7.4.3. Market size and forecast, by Technology

      • 7.4.4. Market size and forecast, by End User

      • 7.4.5. Market size and forecast, by country

        • 7.4.5.1. China
          • 7.4.5.1.1. Key market trends, growth factors and opportunities
          • 7.4.5.1.2. Market size and forecast, by Component
          • 7.4.5.1.3. Market size and forecast, by Technology
          • 7.4.5.1.4. Market size and forecast, by End User
        • 7.4.5.2. Japan
          • 7.4.5.2.1. Key market trends, growth factors and opportunities
          • 7.4.5.2.2. Market size and forecast, by Component
          • 7.4.5.2.3. Market size and forecast, by Technology
          • 7.4.5.2.4. Market size and forecast, by End User
        • 7.4.5.3. India
          • 7.4.5.3.1. Key market trends, growth factors and opportunities
          • 7.4.5.3.2. Market size and forecast, by Component
          • 7.4.5.3.3. Market size and forecast, by Technology
          • 7.4.5.3.4. Market size and forecast, by End User
        • 7.4.5.4. Australia
          • 7.4.5.4.1. Key market trends, growth factors and opportunities
          • 7.4.5.4.2. Market size and forecast, by Component
          • 7.4.5.4.3. Market size and forecast, by Technology
          • 7.4.5.4.4. Market size and forecast, by End User
        • 7.4.5.5. South Korea
          • 7.4.5.5.1. Key market trends, growth factors and opportunities
          • 7.4.5.5.2. Market size and forecast, by Component
          • 7.4.5.5.3. Market size and forecast, by Technology
          • 7.4.5.5.4. Market size and forecast, by End User
        • 7.4.5.6. Rest of Asia-Pacific
          • 7.4.5.6.1. Key market trends, growth factors and opportunities
          • 7.4.5.6.2. Market size and forecast, by Component
          • 7.4.5.6.3. Market size and forecast, by Technology
          • 7.4.5.6.4. Market size and forecast, by End User
    • 7.5. LAMEA

      • 7.5.1. Key trends and opportunities

      • 7.5.2. Market size and forecast, by Component

      • 7.5.3. Market size and forecast, by Technology

      • 7.5.4. Market size and forecast, by End User

      • 7.5.5. Market size and forecast, by country

        • 7.5.5.1. Latin America
          • 7.5.5.1.1. Key market trends, growth factors and opportunities
          • 7.5.5.1.2. Market size and forecast, by Component
          • 7.5.5.1.3. Market size and forecast, by Technology
          • 7.5.5.1.4. Market size and forecast, by End User
        • 7.5.5.2. Middle East
          • 7.5.5.2.1. Key market trends, growth factors and opportunities
          • 7.5.5.2.2. Market size and forecast, by Component
          • 7.5.5.2.3. Market size and forecast, by Technology
          • 7.5.5.2.4. Market size and forecast, by End User
        • 7.5.5.3. Africa
          • 7.5.5.3.1. Key market trends, growth factors and opportunities
          • 7.5.5.3.2. Market size and forecast, by Component
          • 7.5.5.3.3. Market size and forecast, by Technology
          • 7.5.5.3.4. Market size and forecast, by End User
  • CHAPTER 8: COMPETITIVE LANDSCAPE

    • 8.1. Introduction

    • 8.2. Top winning strategies

    • 8.3. Product Mapping of Top 10 Player

    • 8.4. Competitive Dashboard

    • 8.5. Competitive Heatmap

    • 8.6. Top player positioning, 2022

  • CHAPTER 9: COMPANY PROFILES

    • 9.1. IBM Corporation

      • 9.1.1. Company overview

      • 9.1.2. Key Executives

      • 9.1.3. Company snapshot

      • 9.1.4. Operating business segments

      • 9.1.5. Product portfolio

      • 9.1.6. Business performance

      • 9.1.7. Key strategic moves and developments

    • 9.2. Genie AI Ltd.

      • 9.2.1. Company overview

      • 9.2.2. Key Executives

      • 9.2.3. Company snapshot

      • 9.2.4. Operating business segments

      • 9.2.5. Product portfolio

      • 9.2.6. Key strategic moves and developments

    • 9.3. MOSTLY AI Inc.

      • 9.3.1. Company overview

      • 9.3.2. Key Executives

      • 9.3.3. Company snapshot

      • 9.3.4. Operating business segments

      • 9.3.5. Product portfolio

      • 9.3.6. Key strategic moves and developments

    • 9.4. Google LLC

      • 9.4.1. Company overview

      • 9.4.2. Key Executives

      • 9.4.3. Company snapshot

      • 9.4.4. Operating business segments

      • 9.4.5. Product portfolio

      • 9.4.6. Business performance

      • 9.4.7. Key strategic moves and developments

    • 9.5. D-ID

      • 9.5.1. Company overview

      • 9.5.2. Key Executives

      • 9.5.3. Company snapshot

      • 9.5.4. Operating business segments

      • 9.5.5. Product portfolio

      • 9.5.6. Key strategic moves and developments

    • 9.6. Rephrase.ai

      • 9.6.1. Company overview

      • 9.6.2. Key Executives

      • 9.6.3. Company snapshot

      • 9.6.4. Operating business segments

      • 9.6.5. Product portfolio

      • 9.6.6. Key strategic moves and developments

    • 9.7. Amazon Web Services, Inc.

      • 9.7.1. Company overview

      • 9.7.2. Key Executives

      • 9.7.3. Company snapshot

      • 9.7.4. Operating business segments

      • 9.7.5. Product portfolio

      • 9.7.6. Business performance

      • 9.7.7. Key strategic moves and developments

    • 9.8. Microsoft Corporation

      • 9.8.1. Company overview

      • 9.8.2. Key Executives

      • 9.8.3. Company snapshot

      • 9.8.4. Operating business segments

      • 9.8.5. Product portfolio

      • 9.8.6. Business performance

      • 9.8.7. Key strategic moves and developments

    • 9.9. Adobe.

      • 9.9.1. Company overview

      • 9.9.2. Key Executives

      • 9.9.3. Company snapshot

      • 9.9.4. Operating business segments

      • 9.9.5. Product portfolio

      • 9.9.6. Business performance

      • 9.9.7. Key strategic moves and developments

    • 9.10. Synthesia

      • 9.10.1. Company overview

      • 9.10.2. Key Executives

      • 9.10.3. Company snapshot

      • 9.10.4. Operating business segments

      • 9.10.5. Product portfolio

      • 9.10.6. Key strategic moves and developments

  • LIST OF TABLES

  • TABLE 01. GLOBAL GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 02. GENERATIVE AI MARKET FOR SOFTWARE, BY REGION, 2022-2032 ($MILLION)
    TABLE 03. GENERATIVE AI MARKET FOR SERVICE, BY REGION, 2022-2032 ($MILLION)
    TABLE 04. GLOBAL GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 05. GENERATIVE AI MARKET FOR GENERATIVE ADVERSARIAL NETWORKS (GANS), BY REGION, 2022-2032 ($MILLION)
    TABLE 06. GENERATIVE AI MARKET FOR TRANSFORMER, BY REGION, 2022-2032 ($MILLION)
    TABLE 07. GENERATIVE AI MARKET FOR VARIATIONAL AUTOENCODER (VAE), BY REGION, 2022-2032 ($MILLION)
    TABLE 08. GENERATIVE AI MARKET FOR DIFFUSION NETWORKS, BY REGION, 2022-2032 ($MILLION)
    TABLE 09. GENERATIVE AI MARKET FOR RETRIEVAL AUGMENTED GENERATION, BY REGION, 2022-2032 ($MILLION)
    TABLE 10. GLOBAL GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 11. GENERATIVE AI MARKET FOR MEDIA AND ENTERTAINMENT, BY REGION, 2022-2032 ($MILLION)
    TABLE 12. GENERATIVE AI MARKET FOR BFSI, BY REGION, 2022-2032 ($MILLION)
    TABLE 13. GENERATIVE AI MARKET FOR IT AND TELECOM, BY REGION, 2022-2032 ($MILLION)
    TABLE 14. GENERATIVE AI MARKET FOR HEALTHCARE, BY REGION, 2022-2032 ($MILLION)
    TABLE 15. GENERATIVE AI MARKET FOR AUTOMOTIVE AND TRANSPORTATION, BY REGION, 2022-2032 ($MILLION)
    TABLE 16. GENERATIVE AI MARKET FOR OTHERS, BY REGION, 2022-2032 ($MILLION)
    TABLE 17. GENERATIVE AI MARKET, BY REGION, 2022-2032 ($MILLION)
    TABLE 18. NORTH AMERICA GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 19. NORTH AMERICA GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 20. NORTH AMERICA GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 21. NORTH AMERICA GENERATIVE AI MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 22. U.S. GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 23. U.S. GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 24. U.S. GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 25. CANADA GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 26. CANADA GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 27. CANADA GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 28. EUROPE GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 29. EUROPE GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 30. EUROPE GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 31. EUROPE GENERATIVE AI MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 32. UK GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 33. UK GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 34. UK GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 35. GERMANY GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 36. GERMANY GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 37. GERMANY GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 38. FRANCE GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 39. FRANCE GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 40. FRANCE GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 41. ITALY GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 42. ITALY GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 43. ITALY GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 44. SPAIN GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 45. SPAIN GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 46. SPAIN GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 47. REST OF EUROPE GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 48. REST OF EUROPE GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 49. REST OF EUROPE GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 50. ASIA-PACIFIC GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 51. ASIA-PACIFIC GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 52. ASIA-PACIFIC GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 53. ASIA-PACIFIC GENERATIVE AI MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 54. CHINA GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 55. CHINA GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 56. CHINA GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 57. JAPAN GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 58. JAPAN GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 59. JAPAN GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 60. INDIA GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 61. INDIA GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 62. INDIA GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 63. AUSTRALIA GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 64. AUSTRALIA GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 65. AUSTRALIA GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 66. SOUTH KOREA GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 67. SOUTH KOREA GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 68. SOUTH KOREA GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 69. REST OF ASIA-PACIFIC GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 70. REST OF ASIA-PACIFIC GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 71. REST OF ASIA-PACIFIC GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 72. LAMEA GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 73. LAMEA GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 74. LAMEA GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 75. LAMEA GENERATIVE AI MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 76. LATIN AMERICA GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 77. LATIN AMERICA GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 78. LATIN AMERICA GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 79. MIDDLE EAST GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 80. MIDDLE EAST GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 81. MIDDLE EAST GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 82. AFRICA GENERATIVE AI MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 83. AFRICA GENERATIVE AI MARKET, BY TECHNOLOGY, 2022-2032 ($MILLION)
    TABLE 84. AFRICA GENERATIVE AI MARKET, BY END USER, 2022-2032 ($MILLION)
    TABLE 85. IBM CORPORATION: KEY EXECUTIVES
    TABLE 86. IBM CORPORATION: COMPANY SNAPSHOT
    TABLE 87. IBM CORPORATION: SERVICE SEGMENTS
    TABLE 88. IBM CORPORATION: PRODUCT PORTFOLIO
    TABLE 89. IBM CORPORATION: KEY STRATERGIES
    TABLE 90. GENIE AI LTD.: KEY EXECUTIVES
    TABLE 91. GENIE AI LTD.: COMPANY SNAPSHOT
    TABLE 92. GENIE AI LTD.: SERVICE SEGMENTS
    TABLE 93. GENIE AI LTD.: PRODUCT PORTFOLIO
    TABLE 94. GENIE AI LTD.: KEY STRATERGIES
    TABLE 95. MOSTLY AI INC.: KEY EXECUTIVES
    TABLE 96. MOSTLY AI INC.: COMPANY SNAPSHOT
    TABLE 97. MOSTLY AI INC.: SERVICE SEGMENTS
    TABLE 98. MOSTLY AI INC.: PRODUCT PORTFOLIO
    TABLE 99. MOSTLY AI INC.: KEY STRATERGIES
    TABLE 100. GOOGLE LLC: KEY EXECUTIVES
    TABLE 101. GOOGLE LLC: COMPANY SNAPSHOT
    TABLE 102. GOOGLE LLC: SERVICE SEGMENTS
    TABLE 103. GOOGLE LLC: PRODUCT PORTFOLIO
    TABLE 104. GOOGLE LLC: KEY STRATERGIES
    TABLE 105. D-ID: KEY EXECUTIVES
    TABLE 106. D-ID: COMPANY SNAPSHOT
    TABLE 107. D-ID: SERVICE SEGMENTS
    TABLE 108. D-ID: PRODUCT PORTFOLIO
    TABLE 109. D-ID: KEY STRATERGIES
    TABLE 110. REPHRASE.AI: KEY EXECUTIVES
    TABLE 111. REPHRASE.AI: COMPANY SNAPSHOT
    TABLE 112. REPHRASE.AI: SERVICE SEGMENTS
    TABLE 113. REPHRASE.AI: PRODUCT PORTFOLIO
    TABLE 114. REPHRASE.AI: KEY STRATERGIES
    TABLE 115. AMAZON WEB SERVICES, INC.: KEY EXECUTIVES
    TABLE 116. AMAZON WEB SERVICES, INC.: COMPANY SNAPSHOT
    TABLE 117. AMAZON WEB SERVICES, INC.: SERVICE SEGMENTS
    TABLE 118. AMAZON WEB SERVICES, INC.: PRODUCT PORTFOLIO
    TABLE 119. AMAZON WEB SERVICES, INC.: KEY STRATERGIES
    TABLE 120. MICROSOFT CORPORATION: KEY EXECUTIVES
    TABLE 121. MICROSOFT CORPORATION: COMPANY SNAPSHOT
    TABLE 122. MICROSOFT CORPORATION: SERVICE SEGMENTS
    TABLE 123. MICROSOFT CORPORATION: PRODUCT PORTFOLIO
    TABLE 124. MICROSOFT CORPORATION: KEY STRATERGIES
    TABLE 125. ADOBE.: KEY EXECUTIVES
    TABLE 126. ADOBE.: COMPANY SNAPSHOT
    TABLE 127. ADOBE.: SERVICE SEGMENTS
    TABLE 128. ADOBE.: PRODUCT PORTFOLIO
    TABLE 129. ADOBE.: KEY STRATERGIES
    TABLE 130. SYNTHESIA: KEY EXECUTIVES
    TABLE 131. SYNTHESIA: COMPANY SNAPSHOT
    TABLE 132. SYNTHESIA: SERVICE SEGMENTS
    TABLE 133. SYNTHESIA: PRODUCT PORTFOLIO
    TABLE 134. SYNTHESIA: KEY STRATERGIES
  • LIST OF FIGURES

  • FIGURE 01. GENERATIVE AI MARKET, 2022-2032
    FIGURE 02. SEGMENTATION OF GENERATIVE AI MARKET, 2022-2032
    FIGURE 03. GENERATIVE AI MARKET,2022-2032
    FIGURE 04. TOP INVESTMENT POCKETS IN GENERATIVE AI MARKET (2023-2032)
    FIGURE 05. HIGH TO MODERATE BARGAINING POWER OF SUPPLIERS
    FIGURE 06. HIGH TO MODERATE THREAT OF NEW ENTRANTS
    FIGURE 07. MODERATE TO HIGH THREAT OF SUBSTITUTES
    FIGURE 08. HIGH TO MODERATE INTENSITY OF RIVALRY
    FIGURE 09. HIGH O MODERATE BARGAINING POWER OF BUYERS
    FIGURE 10. GLOBAL GENERATIVE AI MARKET:DRIVERS, RESTRAINTS AND OPPORTUNITIES
    FIGURE 11. GENERATIVE AI MARKET, BY COMPONENT, 2022(%)
    FIGURE 12. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR SOFTWARE, BY COUNTRY 2022-2032(%)
    FIGURE 13. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR SERVICE, BY COUNTRY 2022-2032(%)
    FIGURE 14. GENERATIVE AI MARKET, BY TECHNOLOGY, 2022(%)
    FIGURE 15. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR GENERATIVE ADVERSARIAL NETWORKS (GANS), BY COUNTRY 2022-2032(%)
    FIGURE 16. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR TRANSFORMER, BY COUNTRY 2022-2032(%)
    FIGURE 17. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR VARIATIONAL AUTOENCODER (VAE), BY COUNTRY 2022-2032(%)
    FIGURE 18. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR DIFFUSION NETWORKS, BY COUNTRY 2022-2032(%)
    FIGURE 19. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR RETRIEVAL AUGMENTED GENERATION, BY COUNTRY 2022-2032(%)
    FIGURE 20. GENERATIVE AI MARKET, BY END USER, 2022(%)
    FIGURE 21. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR MEDIA AND ENTERTAINMENT, BY COUNTRY 2022-2032(%)
    FIGURE 22. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR BFSI, BY COUNTRY 2022-2032(%)
    FIGURE 23. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR IT AND TELECOM, BY COUNTRY 2022-2032(%)
    FIGURE 24. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR HEALTHCARE, BY COUNTRY 2022-2032(%)
    FIGURE 25. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR AUTOMOTIVE AND TRANSPORTATION, BY COUNTRY 2022-2032(%)
    FIGURE 26. COMPARATIVE SHARE ANALYSIS OF GENERATIVE AI MARKET FOR OTHERS, BY COUNTRY 2022-2032(%)
    FIGURE 27. GENERATIVE AI MARKET BY REGION, 2022
    FIGURE 28. U.S. GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 29. CANADA GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 30. UK GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 31. GERMANY GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 32. FRANCE GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 33. ITALY GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 34. SPAIN GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 35. REST OF EUROPE GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 36. CHINA GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 37. JAPAN GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 38. INDIA GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 39. AUSTRALIA GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 40. SOUTH KOREA GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 41. REST OF ASIA-PACIFIC GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 42. LATIN AMERICA GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 43. MIDDLE EAST GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 44. AFRICA GENERATIVE AI MARKET, 2022-2032 ($MILLION)
    FIGURE 45. TOP WINNING STRATEGIES, BY YEAR
    FIGURE 46. TOP WINNING STRATEGIES, BY DEVELOPMENT
    FIGURE 47. TOP WINNING STRATEGIES, BY COMPANY
    FIGURE 48. PRODUCT MAPPING OF TOP 10 PLAYERS
    FIGURE 49. COMPETITIVE DASHBOARD
    FIGURE 50. COMPETITIVE HEATMAP: GENERATIVE AI MARKET
    FIGURE 51. TOP PLAYER POSITIONING, 2022
    FIGURE 52. IBM CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 53. IBM CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 54. IBM CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 55. IBM CORPORATION: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 56. GOOGLE LLC: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 57. GOOGLE LLC: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 58. GOOGLE LLC: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 59. GOOGLE LLC: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 60. AMAZON WEB SERVICES, INC.: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 61. AMAZON WEB SERVICES, INC.: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 62. AMAZON WEB SERVICES, INC.: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 63. MICROSOFT CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 64. MICROSOFT CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 65. MICROSOFT CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 66. MICROSOFT CORPORATION: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 67. ADOBE.: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 68. ADOBE.: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 69. ADOBE.: REVENUE SHARE BY REGION, 2022 (%)

Purchase Full Report of
Generative AI Market

PURCHASE OPTIONS



* Taxes/Fees, If applicable will be added during checkout. All prices in USD.

Have a question ?

Need to add more ?

Avail up to 30% discount on subscription plans on


Avenue