Categories
Life Sciences Consumer Goods Materials and Chemicals Construction & Manufacturing Food and Beverages Energy and Power Semiconductor and Electronics Automotive and Transportation ICT & Media Aerospace & Defense BFSI

Int'l : +1-503-894-6022 | Toll Free : +1-800-792-5285 | help@alliedmarketresearch.com

Recommendation Engine Market by Type (Collaborative Filtering, Content-based Filtering, Hybrid recommendation), by Deployment Model (On-Premises, Cloud), by Enterprise Size (Large Enterprises, Small and Medium Enterprises), by Application (Personalized Campaigns and Customer Delivery, Strategy Operations and Planning, Product Planning and Proactive Asset Management), by Industry Vertical (Retail and Consumer Goods, IT and Telecom, Healthcare and Life Science, BFSI, Media and Entertainment, Others): Global Opportunity Analysis and Industry Forecast, 2021-2031

A14635

Pages: 339

Charts: 91

Tables: 180

Recommendation Engine Market Statistics, 2031

The global recommendation engine market size was valued at $2.7 billion in 2021, and is projected to reach $43.8 billion by 2031, growing at a CAGR of 32.1% from 2022 to 2031.

Growth in adoption of digital technologies and increase in focus on enhancing the customer experience is boosting the growth of the global recommendation engine market. In addition, surge in use of the deep learning technology in AI recommendation engine solution positively impact the growth of the market. However, lack of skills & expertise and concerns over accessing customers personal data hamper the recommendation engine market growth. On the contrary, increase in demand for analyzing large volume of data   is expected to offer remunerative opportunities for expansion of the recommendation engine market during the forecast period.

Recommendation engine is a data filtering technology that allows marketers to provide customers with relevant product recommendation in real time. It uses complex algorithms and data analysis techniques, such as machine learning (ML) and artificial intelligence (AI), to recommend appropriate product catalog to an individual. Moreover, it can present products on the basis of user preferences, historical browsing history, traits, and situational context on website, application, and emails. It is currently used in business-to-consumer (B2C) e-commerce industries, such as entertainment, mobile app, and education, that demand a customized strategy. 

The recommendation engine market is segmented on the basis of by type, deployment model, application type, enterprise size, industry vertical, and region. On the basis of type, the market is categorized into collaborative filtering, content-based filtering, and hybrid recommendation. On the basis of deployment model, the recommendation engine market is fragmented into on-premise and cloud.

On the basis of enterprise size, the market is bifurcated into large enterprises and SMEs. By application type, the recommendation engine market is divided into personalized campaigns & customer delivery, strategy operations & planning, and product planning & proactive asset management. By industry vertical, it is classified into BFSI, IT & telecom, healthcare & life science, retail & consumer goods, media & entertainment, and others. By region, the recommendation engine market is analyzed across North America, Europe, Asia-Pacific, and LAMEA 

[TYPEGRAPH]

In terms of type, the collaborative filtering segment holds the highest digital recommendation engine market share owing to increase in demand for reliable recommendation engines from e-commerce platforms to enhance their customers' shopping experience by suggesting products on the basis of their tastes and preferences. However, the hybrid recommendation segment is expected to grow at the highest rate during the forecast period, owing to rise in usage of hybrid systems to improve the effectiveness of end-user solutions and also to improve the algorithm efficiency.

[REGIONGRAPH]

Region-wise, the recommendation engine market size was dominated by North America in 2021. The region is expected to retain its position during the forecast period owing to rise in adoption of advanced technologies and increase in government support for emerging technologies in the region. Asia-Pacific is expected to witness significant growth during the forecast period owing to upsurge in penetration of e-commerce,  surge in online shopping transactions, and growth of over the top ott service providers.

The key players that operate in the recommendation engine industry are Adobe, Amazon Web Services, Google LLC, Hewlett Packard Enterprise Development LP, IBM Corporation, Intel Corporation, Microsoft Corporation, Oracle Corporation, Salesforce, Inc., and SAP SE. These players have adopted various strategies to increase their market penetration and strengthen their position in the recommendation engine industry. 

Top Impacting Factors 

Growth in adoption of digital technologies   

With rise in digitalization, online shopping has increased across e-commerce platforms. In addition, recommendation engines allow user-friendly browsing and show the products or information to the customer as per the previous search. Moreover, mobile phone ownership is rapidly contributing to e-commerce growth and prompting e-commerce websites to embrace recommendation engines. For instance, in 2022, according to Global System for Mobile Communications Association (GSMA), the number of mobile subscribers is expected to reach 5.8 billion in 2025, from 5.3 billion in 2021. This anticipated rise is anticipated to boost the growth of the e-commerce industry, which drives the recommendation engine market. 

Increase in focus enhance customer experience   

Development in emphasis to improve customer  satisfaction & experience is a major factor driving the development of the demand for the recommendation engine. In addition, it is important to enhance customer experience to achieve customer engagement and retention, higher sales and return on investment (RoI). Smart product recommendations also allow natural, logical opportunities for upselling and cross-selling. Customers show interest through their actions and experience, and the product recommendation system automatically matches the behavior with the right recommendations. Small transactions will become larger, and customers who may not have been on the track to make a purchase are suddenly interested in doing so. For instance, 31% of ecommerce site revenue is generated from customized recommendations and almost 35% of Amazon’s revenue is generated by its recommendation engine, which in turn is driving the growth of the recommendation engine market. 

Digital Capabilities: 

A recommendation engine works using a combination of data and machine learning technology.  It is an advanced data filtering system that uses behavioral data, computer learning, and statistical modeling to predict the content, product, or services required by the customers. The more data it has, the more efficient and effective it is expected to be in making relevant revenue-generating suggestions. Recommendation engines complete a standard four-step process.

The first and most important step for creating a recommendation engine is to gather data. Data that are collected are of two main types, secondly implicit data and explicit data. Implicit data helps to collect information from activities such as web search history, clicks, cart events, search log, and order history. Explicit Data is information gathered from customer input, such as reviews & ratings, likes & dislikes, and product comments.

Moreover, recommender systems are often seen as a “black box”, the model created by these large companies are not very easily interpretable. The results which are generated are often recommendations for the user for things that they need / want, however, are unaware that they need / want it until they have been recommended to them. 

Moreover, there are many different ways to build recommender systems, some use algorithmic and formulaic approaches such as Page Rank while others use more modelling centric approaches such as collaborative filtering, content based, and link prediction. All of these approaches can vary in complexity; however, complexity does not translate to “good” performance. Often simple solutions and implementations yield the strongest results. For example, large companies such as Reddit, Hacker News, and Google have used simple formulaic implementations of recommendation engines to promote content on their platform 

Key Benefits: 

A recommendation engine is a piece of software that carefully examines market data to generate suggestions that website visitors find interesting. A system that identifies and provides employees with recommended content is referred to as a recommendation engine. Mobile applications are one example of how other technological advancements continue to change consumer interest and make use of the available data. Within the ICT industry, advice engine is regarded as a crucial component of software and application products.

The recommendation system looks for items that match the user’s likes and tastes using information analysis techniques. Different advice engines are available for diverse applications. These include the image recommendation engine, the e-commerce product recommendation, the content recommendation engine, and the product suggestion engine for products.

The demand for recommendation engines is being met by the rise in need to improve customer experience. The exponential demand for recommendation engine solutions is a result of organizations’ increasing adoption of digital technologies. Many businesses are trying to integrate technologies, including computer science (AI), with their apps, businesses, analytics, and services as a result of the increasing diversity of enterprises and the resulting surge in competition among them. Globally, many businesses are undergoing digital transformation, focusing on increasing worker and customer expertise through the use of automation solutions. . 

The revenue and margins are positively impacted by these edges. During the forecast period, this favorable impact is likely to create significant prospects for the adoption of recommendation engines. The recommender may collect user identification information, demographic information, activity data, purchase history, ranking history, and other data. The privacy of this data is also important. Giving the recommender access to this information in the open could present intolerable privacy hazards. Without the client’s consent, the recommender might sell the client’s information to a third party, and it might even become the target of determined thieves. 

End-user Adoption: 

With an increase in competition, major recommendation enginemarket players have started partnering with companies to expand their market penetration and reach. For instance, in March 2023 ReadWorks partnered with Tailor-ED, announces a program that directly supports the student learning experience and reading outcomes through an artificial intelligence recommendation engine. 

Owing to technological advancements across the world and the rise in demand for recommendation engine, various companies have expanded their current product portfolios and innovations with increased diversification among customers. For instance, in January 2021, Adobe launched the same page enhanced personalization with Adobe Target and a real-time customer data platform. This new integration with Adobe Real-time Customer Data Platform (CDP) provides Adobe Target with a unified profile sourced from all online and offline interactions. Growing investment from digital technology drives demand in the recommendation engine market.

For Instance, in June 2019, Amazon.com, Inc. announced the availability of its machine learning service, Amazon Personalize. It is a service that enables users to make personalized as well as non-personalized recommendations for their applications, allowing them to curate recommendations without requiring any machine learning experience. 

Key Benefits for Stakeholders

  • The study provides an in-depth analysis of recommendation engine market forecast along with current trends and future estimations to explain the imminent investment pockets. 

  • Information about key drivers, restraints, and opportunities and their impact analysis on recommendation engine market trends is provided in the report. 

  • Porter’s five forces analysis illustrates the potency of the buyers and suppliers operating in the industry. 

  • The recommendation engine market analysis from 2022 to 2031 is provided to determine the market potential. 

Key Market Segments

  • By Industry Vertical
    • Retail and Consumer Goods
    • IT and Telecom
    • Healthcare and Life Science
    • BFSI
    • Media and Entertainment
    • Others
  • By Type
    • Collaborative Filtering
    • Content-based Filtering
    • Hybrid recommendation
  • By Deployment Model
    • On-Premises
    • Cloud
  • By Enterprise Size
    • Large Enterprises
    • Small and Medium Enterprises
  • By Application
    • Personalized Campaigns and Customer Delivery
    • Strategy Operations and Planning
    • Product Planning and Proactive Asset Management
  • By Region
    • North America
      • U.S.
      • Canada
    • Europe
      • UK
      • Germany
      • France
      • Italy
      • Spain
      • Rest of Europe
    • Asia-Pacific
      • China
      • Japan
      • South Korea
      • India
      • Australia
      • Rest of Asia-Pacific
    • LAMEA
      • Latin America
      • Middle East
      • Africa


Key Market Players

  • Hewlett Packard Enterprise Development LP
  • Salesforce, Inc.
  • IBM Corporation
  • Adobe
  • Amazon Web Services
  • Intel Corporation
  • SAP SE
  • Microsoft Corporation
  • Google LLC
  • Oracle Corporation
  • CHAPTER 1: INTRODUCTION

    • 1.1. Report description

    • 1.2. Key market segments

    • 1.3. Key benefits to the stakeholders

    • 1.4. Research Methodology

      • 1.4.1. Primary research

      • 1.4.2. Secondary research

      • 1.4.3. Analyst tools and models

  • CHAPTER 2: EXECUTIVE SUMMARY

    • 2.1. CXO Perspective

  • CHAPTER 3: MARKET OVERVIEW

    • 3.1. Market definition and scope

    • 3.2. Key findings

      • 3.2.1. Top impacting factors

      • 3.2.2. Top investment pockets

    • 3.3. Porter’s five forces analysis

      • 3.3.1. Bargaining power of suppliers

      • 3.3.2. Bargaining power of buyers

      • 3.3.3. Threat of substitutes

      • 3.3.4. Threat of new entrants

      • 3.3.5. Intensity of rivalry

    • 3.4. Market dynamics

      • 3.4.1. Drivers

        • 3.4.1.1. Growth in adoption of digital technologies
        • 3.4.1.2. Increase in focus on enhancing the customer experience
        • 3.4.1.3. Increase in use of the deep learning technology in AI recommendation engine solution

      • 3.4.2. Restraints

        • 3.4.2.1. Lack of skills and expertise
        • 3.4.2.2. Concerns over accessing customers’ personal data

      • 3.4.3. Opportunities

        • 3.4.3.1. Increase in demand to analyze large volume of data

    • 3.5. COVID-19 Impact Analysis on the market

  • CHAPTER 4: RECOMMENDATION ENGINE MARKET, BY TYPE

    • 4.1. Overview

      • 4.1.1. Market size and forecast

    • 4.2. Collaborative Filtering

      • 4.2.1. Key market trends, growth factors and opportunities

      • 4.2.2. Market size and forecast, by region

      • 4.2.3. Market share analysis by country

    • 4.3. Content-based Filtering

      • 4.3.1. Key market trends, growth factors and opportunities

      • 4.3.2. Market size and forecast, by region

      • 4.3.3. Market share analysis by country

    • 4.4. Hybrid recommendation

      • 4.4.1. Key market trends, growth factors and opportunities

      • 4.4.2. Market size and forecast, by region

      • 4.4.3. Market share analysis by country

  • CHAPTER 5: RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL

    • 5.1. Overview

      • 5.1.1. Market size and forecast

    • 5.2. On-Premises

      • 5.2.1. Key market trends, growth factors and opportunities

      • 5.2.2. Market size and forecast, by region

      • 5.2.3. Market share analysis by country

    • 5.3. Cloud

      • 5.3.1. Key market trends, growth factors and opportunities

      • 5.3.2. Market size and forecast, by region

      • 5.3.3. Market share analysis by country

  • CHAPTER 6: RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE

    • 6.1. Overview

      • 6.1.1. Market size and forecast

    • 6.2. Large Enterprises

      • 6.2.1. Key market trends, growth factors and opportunities

      • 6.2.2. Market size and forecast, by region

      • 6.2.3. Market share analysis by country

    • 6.3. Small and Medium Enterprises

      • 6.3.1. Key market trends, growth factors and opportunities

      • 6.3.2. Market size and forecast, by region

      • 6.3.3. Market share analysis by country

  • CHAPTER 7: RECOMMENDATION ENGINE MARKET, BY APPLICATION

    • 7.1. Overview

      • 7.1.1. Market size and forecast

    • 7.2. Personalized Campaigns and Customer Delivery

      • 7.2.1. Key market trends, growth factors and opportunities

      • 7.2.2. Market size and forecast, by region

      • 7.2.3. Market share analysis by country

    • 7.3. Strategy Operations and Planning

      • 7.3.1. Key market trends, growth factors and opportunities

      • 7.3.2. Market size and forecast, by region

      • 7.3.3. Market share analysis by country

    • 7.4. Product Planning and Proactive Asset Management

      • 7.4.1. Key market trends, growth factors and opportunities

      • 7.4.2. Market size and forecast, by region

      • 7.4.3. Market share analysis by country

  • CHAPTER 8: RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL

    • 8.1. Overview

      • 8.1.1. Market size and forecast

    • 8.2. Retail and Consumer Goods

      • 8.2.1. Key market trends, growth factors and opportunities

      • 8.2.2. Market size and forecast, by region

      • 8.2.3. Market share analysis by country

    • 8.3. IT and Telecom

      • 8.3.1. Key market trends, growth factors and opportunities

      • 8.3.2. Market size and forecast, by region

      • 8.3.3. Market share analysis by country

    • 8.4. Healthcare and Life Science

      • 8.4.1. Key market trends, growth factors and opportunities

      • 8.4.2. Market size and forecast, by region

      • 8.4.3. Market share analysis by country

    • 8.5. BFSI

      • 8.5.1. Key market trends, growth factors and opportunities

      • 8.5.2. Market size and forecast, by region

      • 8.5.3. Market share analysis by country

    • 8.6. Media and Entertainment

      • 8.6.1. Key market trends, growth factors and opportunities

      • 8.6.2. Market size and forecast, by region

      • 8.6.3. Market share analysis by country

    • 8.7. Others

      • 8.7.1. Key market trends, growth factors and opportunities

      • 8.7.2. Market size and forecast, by region

      • 8.7.3. Market share analysis by country

  • CHAPTER 9: RECOMMENDATION ENGINE MARKET, BY REGION

    • 9.1. Overview

      • 9.1.1. Market size and forecast By Region

    • 9.2. North America

      • 9.2.1. Key trends and opportunities

      • 9.2.2. Market size and forecast, by Type

      • 9.2.3. Market size and forecast, by Deployment Model

      • 9.2.4. Market size and forecast, by Enterprise Size

      • 9.2.5. Market size and forecast, by Application

      • 9.2.6. Market size and forecast, by Industry Vertical

      • 9.2.7. Market size and forecast, by country

        • 9.2.7.1. U.S.
          • 9.2.7.1.1. Key market trends, growth factors and opportunities
          • 9.2.7.1.2. Market size and forecast, by Type
          • 9.2.7.1.3. Market size and forecast, by Deployment Model
          • 9.2.7.1.4. Market size and forecast, by Enterprise Size
          • 9.2.7.1.5. Market size and forecast, by Application
          • 9.2.7.1.6. Market size and forecast, by Industry Vertical
        • 9.2.7.2. Canada
          • 9.2.7.2.1. Key market trends, growth factors and opportunities
          • 9.2.7.2.2. Market size and forecast, by Type
          • 9.2.7.2.3. Market size and forecast, by Deployment Model
          • 9.2.7.2.4. Market size and forecast, by Enterprise Size
          • 9.2.7.2.5. Market size and forecast, by Application
          • 9.2.7.2.6. Market size and forecast, by Industry Vertical
    • 9.3. Europe

      • 9.3.1. Key trends and opportunities

      • 9.3.2. Market size and forecast, by Type

      • 9.3.3. Market size and forecast, by Deployment Model

      • 9.3.4. Market size and forecast, by Enterprise Size

      • 9.3.5. Market size and forecast, by Application

      • 9.3.6. Market size and forecast, by Industry Vertical

      • 9.3.7. Market size and forecast, by country

        • 9.3.7.1. UK
          • 9.3.7.1.1. Key market trends, growth factors and opportunities
          • 9.3.7.1.2. Market size and forecast, by Type
          • 9.3.7.1.3. Market size and forecast, by Deployment Model
          • 9.3.7.1.4. Market size and forecast, by Enterprise Size
          • 9.3.7.1.5. Market size and forecast, by Application
          • 9.3.7.1.6. Market size and forecast, by Industry Vertical
        • 9.3.7.2. Germany
          • 9.3.7.2.1. Key market trends, growth factors and opportunities
          • 9.3.7.2.2. Market size and forecast, by Type
          • 9.3.7.2.3. Market size and forecast, by Deployment Model
          • 9.3.7.2.4. Market size and forecast, by Enterprise Size
          • 9.3.7.2.5. Market size and forecast, by Application
          • 9.3.7.2.6. Market size and forecast, by Industry Vertical
        • 9.3.7.3. France
          • 9.3.7.3.1. Key market trends, growth factors and opportunities
          • 9.3.7.3.2. Market size and forecast, by Type
          • 9.3.7.3.3. Market size and forecast, by Deployment Model
          • 9.3.7.3.4. Market size and forecast, by Enterprise Size
          • 9.3.7.3.5. Market size and forecast, by Application
          • 9.3.7.3.6. Market size and forecast, by Industry Vertical
        • 9.3.7.4. Italy
          • 9.3.7.4.1. Key market trends, growth factors and opportunities
          • 9.3.7.4.2. Market size and forecast, by Type
          • 9.3.7.4.3. Market size and forecast, by Deployment Model
          • 9.3.7.4.4. Market size and forecast, by Enterprise Size
          • 9.3.7.4.5. Market size and forecast, by Application
          • 9.3.7.4.6. Market size and forecast, by Industry Vertical
        • 9.3.7.5. Spain
          • 9.3.7.5.1. Key market trends, growth factors and opportunities
          • 9.3.7.5.2. Market size and forecast, by Type
          • 9.3.7.5.3. Market size and forecast, by Deployment Model
          • 9.3.7.5.4. Market size and forecast, by Enterprise Size
          • 9.3.7.5.5. Market size and forecast, by Application
          • 9.3.7.5.6. Market size and forecast, by Industry Vertical
        • 9.3.7.6. Rest of Europe
          • 9.3.7.6.1. Key market trends, growth factors and opportunities
          • 9.3.7.6.2. Market size and forecast, by Type
          • 9.3.7.6.3. Market size and forecast, by Deployment Model
          • 9.3.7.6.4. Market size and forecast, by Enterprise Size
          • 9.3.7.6.5. Market size and forecast, by Application
          • 9.3.7.6.6. Market size and forecast, by Industry Vertical
    • 9.4. Asia-Pacific

      • 9.4.1. Key trends and opportunities

      • 9.4.2. Market size and forecast, by Type

      • 9.4.3. Market size and forecast, by Deployment Model

      • 9.4.4. Market size and forecast, by Enterprise Size

      • 9.4.5. Market size and forecast, by Application

      • 9.4.6. Market size and forecast, by Industry Vertical

      • 9.4.7. Market size and forecast, by country

        • 9.4.7.1. China
          • 9.4.7.1.1. Key market trends, growth factors and opportunities
          • 9.4.7.1.2. Market size and forecast, by Type
          • 9.4.7.1.3. Market size and forecast, by Deployment Model
          • 9.4.7.1.4. Market size and forecast, by Enterprise Size
          • 9.4.7.1.5. Market size and forecast, by Application
          • 9.4.7.1.6. Market size and forecast, by Industry Vertical
        • 9.4.7.2. Japan
          • 9.4.7.2.1. Key market trends, growth factors and opportunities
          • 9.4.7.2.2. Market size and forecast, by Type
          • 9.4.7.2.3. Market size and forecast, by Deployment Model
          • 9.4.7.2.4. Market size and forecast, by Enterprise Size
          • 9.4.7.2.5. Market size and forecast, by Application
          • 9.4.7.2.6. Market size and forecast, by Industry Vertical
        • 9.4.7.3. South Korea
          • 9.4.7.3.1. Key market trends, growth factors and opportunities
          • 9.4.7.3.2. Market size and forecast, by Type
          • 9.4.7.3.3. Market size and forecast, by Deployment Model
          • 9.4.7.3.4. Market size and forecast, by Enterprise Size
          • 9.4.7.3.5. Market size and forecast, by Application
          • 9.4.7.3.6. Market size and forecast, by Industry Vertical
        • 9.4.7.4. India
          • 9.4.7.4.1. Key market trends, growth factors and opportunities
          • 9.4.7.4.2. Market size and forecast, by Type
          • 9.4.7.4.3. Market size and forecast, by Deployment Model
          • 9.4.7.4.4. Market size and forecast, by Enterprise Size
          • 9.4.7.4.5. Market size and forecast, by Application
          • 9.4.7.4.6. Market size and forecast, by Industry Vertical
        • 9.4.7.5. Australia
          • 9.4.7.5.1. Key market trends, growth factors and opportunities
          • 9.4.7.5.2. Market size and forecast, by Type
          • 9.4.7.5.3. Market size and forecast, by Deployment Model
          • 9.4.7.5.4. Market size and forecast, by Enterprise Size
          • 9.4.7.5.5. Market size and forecast, by Application
          • 9.4.7.5.6. Market size and forecast, by Industry Vertical
        • 9.4.7.6. Rest of Asia-Pacific
          • 9.4.7.6.1. Key market trends, growth factors and opportunities
          • 9.4.7.6.2. Market size and forecast, by Type
          • 9.4.7.6.3. Market size and forecast, by Deployment Model
          • 9.4.7.6.4. Market size and forecast, by Enterprise Size
          • 9.4.7.6.5. Market size and forecast, by Application
          • 9.4.7.6.6. Market size and forecast, by Industry Vertical
    • 9.5. LAMEA

      • 9.5.1. Key trends and opportunities

      • 9.5.2. Market size and forecast, by Type

      • 9.5.3. Market size and forecast, by Deployment Model

      • 9.5.4. Market size and forecast, by Enterprise Size

      • 9.5.5. Market size and forecast, by Application

      • 9.5.6. Market size and forecast, by Industry Vertical

      • 9.5.7. Market size and forecast, by country

        • 9.5.7.1. Latin America
          • 9.5.7.1.1. Key market trends, growth factors and opportunities
          • 9.5.7.1.2. Market size and forecast, by Type
          • 9.5.7.1.3. Market size and forecast, by Deployment Model
          • 9.5.7.1.4. Market size and forecast, by Enterprise Size
          • 9.5.7.1.5. Market size and forecast, by Application
          • 9.5.7.1.6. Market size and forecast, by Industry Vertical
        • 9.5.7.2. Middle East
          • 9.5.7.2.1. Key market trends, growth factors and opportunities
          • 9.5.7.2.2. Market size and forecast, by Type
          • 9.5.7.2.3. Market size and forecast, by Deployment Model
          • 9.5.7.2.4. Market size and forecast, by Enterprise Size
          • 9.5.7.2.5. Market size and forecast, by Application
          • 9.5.7.2.6. Market size and forecast, by Industry Vertical
        • 9.5.7.3. Africa
          • 9.5.7.3.1. Key market trends, growth factors and opportunities
          • 9.5.7.3.2. Market size and forecast, by Type
          • 9.5.7.3.3. Market size and forecast, by Deployment Model
          • 9.5.7.3.4. Market size and forecast, by Enterprise Size
          • 9.5.7.3.5. Market size and forecast, by Application
          • 9.5.7.3.6. Market size and forecast, by Industry Vertical
  • CHAPTER 10: COMPETITIVE LANDSCAPE

    • 10.1. Introduction

    • 10.2. Top winning strategies

    • 10.3. Product Mapping of Top 10 Player

    • 10.4. Competitive Dashboard

    • 10.5. Competitive Heatmap

    • 10.6. Top player positioning, 2021

  • CHAPTER 11: COMPANY PROFILES

    • 11.1. Adobe

      • 11.1.1. Company overview

      • 11.1.2. Key Executives

      • 11.1.3. Company snapshot

      • 11.1.4. Operating business segments

      • 11.1.5. Product portfolio

      • 11.1.6. Business performance

      • 11.1.7. Key strategic moves and developments

    • 11.2. Amazon Web Services

      • 11.2.1. Company overview

      • 11.2.2. Key Executives

      • 11.2.3. Company snapshot

      • 11.2.4. Operating business segments

      • 11.2.5. Product portfolio

      • 11.2.6. Business performance

      • 11.2.7. Key strategic moves and developments

    • 11.3. Google LLC

      • 11.3.1. Company overview

      • 11.3.2. Key Executives

      • 11.3.3. Company snapshot

      • 11.3.4. Operating business segments

      • 11.3.5. Product portfolio

      • 11.3.6. Business performance

      • 11.3.7. Key strategic moves and developments

    • 11.4. Hewlett Packard Enterprise Development LP

      • 11.4.1. Company overview

      • 11.4.2. Key Executives

      • 11.4.3. Company snapshot

      • 11.4.4. Operating business segments

      • 11.4.5. Product portfolio

      • 11.4.6. Business performance

    • 11.5. IBM Corporation

      • 11.5.1. Company overview

      • 11.5.2. Key Executives

      • 11.5.3. Company snapshot

      • 11.5.4. Operating business segments

      • 11.5.5. Product portfolio

      • 11.5.6. Business performance

      • 11.5.7. Key strategic moves and developments

    • 11.6. Intel Corporation

      • 11.6.1. Company overview

      • 11.6.2. Key Executives

      • 11.6.3. Company snapshot

      • 11.6.4. Operating business segments

      • 11.6.5. Product portfolio

      • 11.6.6. Business performance

      • 11.6.7. Key strategic moves and developments

    • 11.7. Microsoft Corporation

      • 11.7.1. Company overview

      • 11.7.2. Key Executives

      • 11.7.3. Company snapshot

      • 11.7.4. Operating business segments

      • 11.7.5. Product portfolio

      • 11.7.6. Business performance

      • 11.7.7. Key strategic moves and developments

    • 11.8. Oracle Corporation

      • 11.8.1. Company overview

      • 11.8.2. Key Executives

      • 11.8.3. Company snapshot

      • 11.8.4. Operating business segments

      • 11.8.5. Product portfolio

      • 11.8.6. Business performance

      • 11.8.7. Key strategic moves and developments

    • 11.9. Salesforce, Inc.

      • 11.9.1. Company overview

      • 11.9.2. Key Executives

      • 11.9.3. Company snapshot

      • 11.9.4. Operating business segments

      • 11.9.5. Product portfolio

      • 11.9.6. Business performance

      • 11.9.7. Key strategic moves and developments

    • 11.10. SAP SE

      • 11.10.1. Company overview

      • 11.10.2. Key Executives

      • 11.10.3. Company snapshot

      • 11.10.4. Operating business segments

      • 11.10.5. Product portfolio

      • 11.10.6. Business performance

      • 11.10.7. Key strategic moves and developments

  • LIST OF TABLES

  • TABLE 01. GLOBAL RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 02. RECOMMENDATION ENGINE MARKET FOR COLLABORATIVE FILTERING, BY REGION, 2021-2031 ($MILLION)
    TABLE 03. RECOMMENDATION ENGINE MARKET FOR CONTENT-BASED FILTERING, BY REGION, 2021-2031 ($MILLION)
    TABLE 04. RECOMMENDATION ENGINE MARKET FOR HYBRID RECOMMENDATION, BY REGION, 2021-2031 ($MILLION)
    TABLE 05. GLOBAL RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 06. RECOMMENDATION ENGINE MARKET FOR ON-PREMISES, BY REGION, 2021-2031 ($MILLION)
    TABLE 07. RECOMMENDATION ENGINE MARKET FOR CLOUD, BY REGION, 2021-2031 ($MILLION)
    TABLE 08. GLOBAL RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 09. RECOMMENDATION ENGINE MARKET FOR LARGE ENTERPRISES, BY REGION, 2021-2031 ($MILLION)
    TABLE 10. RECOMMENDATION ENGINE MARKET FOR SMALL AND MEDIUM ENTERPRISES, BY REGION, 2021-2031 ($MILLION)
    TABLE 11. GLOBAL RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 12. RECOMMENDATION ENGINE MARKET FOR PERSONALIZED CAMPAIGNS AND CUSTOMER DELIVERY, BY REGION, 2021-2031 ($MILLION)
    TABLE 13. RECOMMENDATION ENGINE MARKET FOR STRATEGY OPERATIONS AND PLANNING, BY REGION, 2021-2031 ($MILLION)
    TABLE 14. RECOMMENDATION ENGINE MARKET FOR PRODUCT PLANNING AND PROACTIVE ASSET MANAGEMENT, BY REGION, 2021-2031 ($MILLION)
    TABLE 15. GLOBAL RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 16. RECOMMENDATION ENGINE MARKET FOR RETAIL AND CONSUMER GOODS, BY REGION, 2021-2031 ($MILLION)
    TABLE 17. RECOMMENDATION ENGINE MARKET FOR IT AND TELECOM, BY REGION, 2021-2031 ($MILLION)
    TABLE 18. RECOMMENDATION ENGINE MARKET FOR HEALTHCARE AND LIFE SCIENCE, BY REGION, 2021-2031 ($MILLION)
    TABLE 19. RECOMMENDATION ENGINE MARKET FOR BFSI, BY REGION, 2021-2031 ($MILLION)
    TABLE 20. RECOMMENDATION ENGINE MARKET FOR MEDIA AND ENTERTAINMENT, BY REGION, 2021-2031 ($MILLION)
    TABLE 21. RECOMMENDATION ENGINE MARKET FOR OTHERS, BY REGION, 2021-2031 ($MILLION)
    TABLE 22. RECOMMENDATION ENGINE MARKET, BY REGION, 2021-2031 ($MILLION)
    TABLE 23. NORTH AMERICA RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 24. NORTH AMERICA RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 25. NORTH AMERICA RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 26. NORTH AMERICA RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 27. NORTH AMERICA RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 28. NORTH AMERICA RECOMMENDATION ENGINE MARKET, BY COUNTRY, 2021-2031 ($MILLION)
    TABLE 29. U.S. RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 30. U.S. RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 31. U.S. RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 32. U.S. RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 33. U.S. RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 34. CANADA RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 35. CANADA RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 36. CANADA RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 37. CANADA RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 38. CANADA RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 39. EUROPE RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 40. EUROPE RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 41. EUROPE RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 42. EUROPE RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 43. EUROPE RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 44. EUROPE RECOMMENDATION ENGINE MARKET, BY COUNTRY, 2021-2031 ($MILLION)
    TABLE 45. UK RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 46. UK RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 47. UK RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 48. UK RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 49. UK RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 50. GERMANY RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 51. GERMANY RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 52. GERMANY RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 53. GERMANY RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 54. GERMANY RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 55. FRANCE RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 56. FRANCE RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 57. FRANCE RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 58. FRANCE RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 59. FRANCE RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 60. ITALY RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 61. ITALY RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 62. ITALY RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 63. ITALY RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 64. ITALY RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 65. SPAIN RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 66. SPAIN RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 67. SPAIN RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 68. SPAIN RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 69. SPAIN RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 70. REST OF EUROPE RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 71. REST OF EUROPE RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 72. REST OF EUROPE RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 73. REST OF EUROPE RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 74. REST OF EUROPE RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 75. ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 76. ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 77. ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 78. ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 79. ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 80. ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY COUNTRY, 2021-2031 ($MILLION)
    TABLE 81. CHINA RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 82. CHINA RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 83. CHINA RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 84. CHINA RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 85. CHINA RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 86. JAPAN RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 87. JAPAN RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 88. JAPAN RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 89. JAPAN RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 90. JAPAN RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 91. SOUTH KOREA RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 92. SOUTH KOREA RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 93. SOUTH KOREA RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 94. SOUTH KOREA RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 95. SOUTH KOREA RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 96. INDIA RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 97. INDIA RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 98. INDIA RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 99. INDIA RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 100. INDIA RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 101. AUSTRALIA RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 102. AUSTRALIA RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 103. AUSTRALIA RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 104. AUSTRALIA RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 105. AUSTRALIA RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 106. REST OF ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 107. REST OF ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 108. REST OF ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 109. REST OF ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 110. REST OF ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 111. LAMEA RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 112. LAMEA RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 113. LAMEA RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 114. LAMEA RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 115. LAMEA RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 116. LAMEA RECOMMENDATION ENGINE MARKET, BY COUNTRY, 2021-2031 ($MILLION)
    TABLE 117. LATIN AMERICA RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 118. LATIN AMERICA RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 119. LATIN AMERICA RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 120. LATIN AMERICA RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 121. LATIN AMERICA RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 122. MIDDLE EAST RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 123. MIDDLE EAST RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 124. MIDDLE EAST RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 125. MIDDLE EAST RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 126. MIDDLE EAST RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 127. AFRICA RECOMMENDATION ENGINE MARKET, BY TYPE, 2021-2031 ($MILLION)
    TABLE 128. AFRICA RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021-2031 ($MILLION)
    TABLE 129. AFRICA RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021-2031 ($MILLION)
    TABLE 130. AFRICA RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021-2031 ($MILLION)
    TABLE 131. AFRICA RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021-2031 ($MILLION)
    TABLE 132. ADOBE: KEY EXECUTIVES
    TABLE 133. ADOBE: COMPANY SNAPSHOT
    TABLE 134. ADOBE: SERVICE SEGMENTS
    TABLE 135. ADOBE: PRODUCT PORTFOLIO
    TABLE 136. ADOBE: KEY STRATERGIES
    TABLE 137. AMAZON WEB SERVICES: KEY EXECUTIVES
    TABLE 138. AMAZON WEB SERVICES: COMPANY SNAPSHOT
    TABLE 139. AMAZON WEB SERVICES: SERVICE SEGMENTS
    TABLE 140. AMAZON WEB SERVICES: PRODUCT PORTFOLIO
    TABLE 141. AMAZON WEB SERVICES: KEY STRATERGIES
    TABLE 142. GOOGLE LLC: KEY EXECUTIVES
    TABLE 143. GOOGLE LLC: COMPANY SNAPSHOT
    TABLE 144. GOOGLE LLC: SERVICE SEGMENTS
    TABLE 145. GOOGLE LLC: PRODUCT PORTFOLIO
    TABLE 146. GOOGLE LLC: KEY STRATERGIES
    TABLE 147. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP: KEY EXECUTIVES
    TABLE 148. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP: COMPANY SNAPSHOT
    TABLE 149. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP: SERVICE SEGMENTS
    TABLE 150. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP: PRODUCT PORTFOLIO
    TABLE 151. IBM CORPORATION: KEY EXECUTIVES
    TABLE 152. IBM CORPORATION: COMPANY SNAPSHOT
    TABLE 153. IBM CORPORATION: SERVICE SEGMENTS
    TABLE 154. IBM CORPORATION: PRODUCT PORTFOLIO
    TABLE 155. IBM CORPORATION: KEY STRATERGIES
    TABLE 156. INTEL CORPORATION: KEY EXECUTIVES
    TABLE 157. INTEL CORPORATION: COMPANY SNAPSHOT
    TABLE 158. INTEL CORPORATION: SERVICE SEGMENTS
    TABLE 159. INTEL CORPORATION: PRODUCT PORTFOLIO
    TABLE 160. INTEL CORPORATION: KEY STRATERGIES
    TABLE 161. MICROSOFT CORPORATION: KEY EXECUTIVES
    TABLE 162. MICROSOFT CORPORATION: COMPANY SNAPSHOT
    TABLE 163. MICROSOFT CORPORATION: SERVICE SEGMENTS
    TABLE 164. MICROSOFT CORPORATION: PRODUCT PORTFOLIO
    TABLE 165. MICROSOFT CORPORATION: KEY STRATERGIES
    TABLE 166. ORACLE CORPORATION: KEY EXECUTIVES
    TABLE 167. ORACLE CORPORATION: COMPANY SNAPSHOT
    TABLE 168. ORACLE CORPORATION: PRODUCT SEGMENTS
    TABLE 169. ORACLE CORPORATION: PRODUCT PORTFOLIO
    TABLE 170. ORACLE CORPORATION: KEY STRATERGIES
    TABLE 171. SALESFORCE, INC.: KEY EXECUTIVES
    TABLE 172. SALESFORCE, INC.: COMPANY SNAPSHOT
    TABLE 173. SALESFORCE, INC.: SERVICE SEGMENTS
    TABLE 174. SALESFORCE, INC.: PRODUCT PORTFOLIO
    TABLE 175. SALESFORCE, INC.: KEY STRATERGIES
    TABLE 176. SAP SE: KEY EXECUTIVES
    TABLE 177. SAP SE: COMPANY SNAPSHOT
    TABLE 178. SAP SE: SERVICE SEGMENTS
    TABLE 179. SAP SE: PRODUCT PORTFOLIO
    TABLE 180. SAP SE: KEY STRATERGIES
  • LIST OF FIGURES

  • FIGURE 01. RECOMMENDATION ENGINE MARKET, 2021-2031
    FIGURE 02. SEGMENTATION OF RECOMMENDATION ENGINE MARKET, 2021-2031
    FIGURE 03. TOP INVESTMENT POCKETS IN RECOMMENDATION ENGINE MARKET (2022-2031)
    FIGURE 04. LOW BARGAINING POWER OF SUPPLIERS
    FIGURE 05. LOW BARGAINING POWER OF BUYERS
    FIGURE 06. LOW THREAT OF SUBSTITUTES
    FIGURE 07. LOW THREAT OF NEW ENTRANTS
    FIGURE 08. LOW INTENSITY OF RIVALRY
    FIGURE 09. DRIVERS, RESTRAINTS AND OPPORTUNITIES: GLOBALRECOMMENDATION ENGINE MARKET
    FIGURE 10. RECOMMENDATION ENGINE MARKET, BY TYPE, 2021(%)
    FIGURE 11. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR COLLABORATIVE FILTERING, BY COUNTRY 2021-2031(%)
    FIGURE 12. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR CONTENT-BASED FILTERING, BY COUNTRY 2021-2031(%)
    FIGURE 13. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR HYBRID RECOMMENDATION, BY COUNTRY 2021-2031(%)
    FIGURE 14. RECOMMENDATION ENGINE MARKET, BY DEPLOYMENT MODEL, 2021(%)
    FIGURE 15. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR ON-PREMISES, BY COUNTRY 2021-2031(%)
    FIGURE 16. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR CLOUD, BY COUNTRY 2021-2031(%)
    FIGURE 17. RECOMMENDATION ENGINE MARKET, BY ENTERPRISE SIZE, 2021(%)
    FIGURE 18. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR LARGE ENTERPRISES, BY COUNTRY 2021-2031(%)
    FIGURE 19. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR SMALL AND MEDIUM ENTERPRISES, BY COUNTRY 2021-2031(%)
    FIGURE 20. RECOMMENDATION ENGINE MARKET, BY APPLICATION, 2021(%)
    FIGURE 21. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR PERSONALIZED CAMPAIGNS AND CUSTOMER DELIVERY, BY COUNTRY 2021-2031(%)
    FIGURE 22. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR STRATEGY OPERATIONS AND PLANNING, BY COUNTRY 2021-2031(%)
    FIGURE 23. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR PRODUCT PLANNING AND PROACTIVE ASSET MANAGEMENT, BY COUNTRY 2021-2031(%)
    FIGURE 24. RECOMMENDATION ENGINE MARKET, BY INDUSTRY VERTICAL, 2021(%)
    FIGURE 25. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR RETAIL AND CONSUMER GOODS, BY COUNTRY 2021-2031(%)
    FIGURE 26. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR IT AND TELECOM, BY COUNTRY 2021-2031(%)
    FIGURE 27. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR HEALTHCARE AND LIFE SCIENCE, BY COUNTRY 2021-2031(%)
    FIGURE 28. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR BFSI, BY COUNTRY 2021-2031(%)
    FIGURE 29. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR MEDIA AND ENTERTAINMENT, BY COUNTRY 2021-2031(%)
    FIGURE 30. COMPARATIVE SHARE ANALYSIS OF RECOMMENDATION ENGINE MARKET FOR OTHERS, BY COUNTRY 2021-2031(%)
    FIGURE 31. RECOMMENDATION ENGINE MARKET BY REGION, 2021
    FIGURE 32. U.S. RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 33. CANADA RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 34. UK RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 35. GERMANY RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 36. FRANCE RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 37. ITALY RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 38. SPAIN RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 39. REST OF EUROPE RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 40. CHINA RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 41. JAPAN RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 42. SOUTH KOREA RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 43. INDIA RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 44. AUSTRALIA RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 45. REST OF ASIA-PACIFIC RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 46. LATIN AMERICA RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 47. MIDDLE EAST RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 48. AFRICA RECOMMENDATION ENGINE MARKET, 2021-2031 ($MILLION)
    FIGURE 49. TOP WINNING STRATEGIES, BY YEAR
    FIGURE 50. TOP WINNING STRATEGIES, BY DEVELOPMENT
    FIGURE 51. TOP WINNING STRATEGIES, BY COMPANY
    FIGURE 52. PRODUCT MAPPING OF TOP 10 PLAYERS
    FIGURE 53. COMPETITIVE DASHBOARD
    FIGURE 54. COMPETITIVE HEATMAP: RECOMMENDATION ENGINE MARKET
    FIGURE 55. TOP PLAYER POSITIONING, 2021
    FIGURE 56. ADOBE: NET REVENUE, 2019-2021 ($MILLION)
    FIGURE 57. ADOBE: RESEARCH & DEVELOPMENT EXPENDITURE, 2019-2021 ($MILLION)
    FIGURE 58. ADOBE: REVENUE SHARE BY SEGMENT, 2021 (%)
    FIGURE 59. ADOBE: REVENUE SHARE BY REGION, 2021 (%)
    FIGURE 60. AMAZON WEB SERVICES: NET REVENUE, 2019-2021 ($MILLION)
    FIGURE 61. AMAZON WEB SERVICES: REVENUE SHARE BY SEGMENT, 2021 (%)
    FIGURE 62. AMAZON WEB SERVICES: REVENUE SHARE BY REGION, 2021 (%)
    FIGURE 63. GOOGLE LLC: NET REVENUE, 2019-2021 ($MILLION)
    FIGURE 64. GOOGLE LLC: REVENUE SHARE BY SEGMENT, 2021 (%)
    FIGURE 65. GOOGLE LLC: REVENUE SHARE BY REGION, 2021 (%)
    FIGURE 66. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP: NET REVENUE, 2019-2021 ($MILLION)
    FIGURE 67. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP: RESEARCH & DEVELOPMENT EXPENDITURE, 2019-2021
    FIGURE 68. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP: REVENUE SHARE BY SEGMENT, 2021 (%)
    FIGURE 69. HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP: REVENUE SHARE BY REGION, 2021 (%)
    FIGURE 70. IBM CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 71. IBM CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2019-2021
    FIGURE 72. IBM CORPORATION: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 73. IBM CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 74. INTEL CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 75. INTEL CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 76. INTEL CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 77. INTEL CORPORATION: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 78. MICROSOFT CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 79. MICROSOFT CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 80. MICROSOFT CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 81. MICROSOFT CORPORATION: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 82. ORACLE CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 83. ORACLE CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022
    FIGURE 84. ORACLE CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 85. ORACLE CORPORATION: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 86. SALESFORCE, INC.: NET REVENUE, 2019-2021 ($MILLION)
    FIGURE 87. SALESFORCE, INC.: REVENUE SHARE BY REGION, 2021 (%)
    FIGURE 88. SAP SE: NET REVENUE, 2019-2021 ($MILLION)
    FIGURE 89. SAP SE: RESEARCH & DEVELOPMENT EXPENDITURE, 2019-2021
    FIGURE 90. SAP SE: REVENUE SHARE BY SEGMENT, 2021 (%)
    FIGURE 91. SAP SE: REVENUE SHARE BY REGION, 2021 (%)

Purchase Full Report of
Recommendation Engine Market

PURCHASE OPTIONS



* Taxes/Fees, If applicable will be added during checkout. All prices in USD.

Have a question ?

Need to add more ?

Avail up to 30% discount on subscription plans on


Avenue