Categories
Life Sciences Consumer Goods Materials and Chemicals Construction & Manufacturing Food and Beverages Energy and Power Semiconductor and Electronics Automotive and Transportation ICT & Media Aerospace & Defense BFSI

Int'l : +1-503-894-6022 | Toll Free : +1-800-792-5285 | help@alliedmarketresearch.com

Deep Learning Market by Component (Hardware, Software, Service), by Application (Image recognition, Signal recognition, Data mining, Others), by Industry Vertical (Security, Marketing, Automotive, Retail and E-Commerce, Healthcare, Manufacturing, Law, Others): Global Opportunity Analysis and Industry Forecast, 2023-2032

A05450

Pages: 350

Charts: 91

Tables: 136

Deep Learning Market Insights, 2032

The global deep learning market size was valued at $16.9 billion in 2022, and is projected to reach $406 billion by 2032, growing at a CAGR of 37.8% from 2023 to 2032.

The key factors that drive the growth of deep learning market include improving continuing power along with declining hardware cost and increasing adoption of cloud-based technology. Growing organizational demand for processing power and the deployment of Internet of Things (IoT) devices across a variety of industries are driving deep learning market growth. In addition, 2.5 quintillion bytes of new data are generated daily, and that figure is rising. Huge amounts of data generated by numerous industry sectors are creating profitable opportunities for deep learning solutions to give businesses effective, adaptable, and scalable insights.

 

Furthermore, to assist clients, extract the information they require from a large dataset, cloud analytics combines technological, infrastructural, and analytical tools and methodologies. In addition, cloud-based deep learning analytics aid organizations in lowering their infrastructure and storage costs as well as operational expenditures. The report focuses on growth prospects, restraints, and trends of the deep learning industry analysis. The study provides Porter’s five forces analysis to understand the impact of various factors, such as bargaining power of suppliers, competitive intensity of competitors, threat of new entrants, threat of substitutes, and bargaining power of buyers, on the deep learning market.

Deep learning is a kind of artificial intelligence and machine learning technology that imitates human behavior to generate human brain cells-generated information. The technology is useful in performing classification tasks and recognizing patterns in photos, text, audio, and other data. In addition, it is utilized to automate jobs that ordinarily call for human intellect, such as annotating photographs and transcribing audio files.

Top Impacting Factors:

Improving Computing Power and Declining Hardware Cost

Growing organizational demand for processing power and the deployment of IoT devices across a variety of industries are driving market expansion. In addition, 2.5 quintillion bytes of new data are generated daily, and that figure is rising. Huge amounts of data generated by numerous industry sectors are creating profitable opportunities for deep learning solutions to give businesses effective, adaptable, and scalable insights. Furthermore, the banking, financial services, and insurance (BFSI) industry held the largest deep learning market share in 2020 due to the industry high production of sensitive data, rising cyberattack rate, and emphasis on customer data security and legal compliance, all of which contribute to the growth of deep learning industry.

Increasing Adoption of Cloud-based Technology

Cloud-analytics is the amalgamation of technological, infrastructural, and analytical tools and techniques to help clients drive necessary information from a massive dataset. In addition, cloud-based deep learning analytics helps institutes to reduce their operational costs as well as to reduce infrastructure and storage costs of the organization. Furthermore, cloud-based deep learning analytics offers institutes superior security and provides enhanced safety to critical data of an organization, which provides lucrative opportunities for the deep learning market.

In addition, cloud computing also helps institutes in analyzing large quantities of data sets and enhance their analytics skill, which propels the demand for deep learning in the future. Furthermore, the rapid adoption of connected devices across various education institutes and government initiatives to increase digitization across the industry vertically propels the growth of the deep learning market. For instance, in July 2020, the Australian Catholic University (ACU) turned its newly united data environment into a data lake to provide a single view of student development. It uses Microsoft’s Power BI and Azure data platform to support students who may need extra help or who are at risk of dropping out of the university entirely. Thus, this is considered as an important factor driving the growth of the market.

Segment Review

The deep learning market is segmented on the basis of component, application, industry vertical, technology, and region. In terms of components, the market is bifurcated into hardware, software, and service. By application, the market is divided into image recognition, signal recognition, data mining, and others. Based on industry vertical, it is divided into security, marketing, automotive, retail & e-commerce, healthcare, manufacturing, law, and others. On the basis of region, it is analyzed across North America, Europe, Asia-Pacific, and LAMEA.

[APPLICATIONGRAPH]

On the basis of application, data mining segment is expected to exhibit fastest CAGR during the deep learning market forecast. This is attributed to the fact that deep learning models can automatically recognize complex patterns, relationships, and correlations in data. This is particularly beneficial for data mining tasks like fraud detection, image recognition, and natural language processing.

[REGIONGRAPH]

On the basis of region, North America dominated the deep learning market size in the year 2022. This is because of high investments and the availability of settled IT infrastructure in the region.

The report analyzes the profiles of key players operating in the deep learning market such as Advanced Micro Devices Inc., Amazon Web Services Inc., Google LLC, IBM Corporation, Intel Corporation, Microsoft Corporation, NVIDIA Corporation, Qualcomm Technologies, Inc., Samsung, and Xilinx. These players have adopted various strategies to increase their market penetration and strengthen their position in the deep learning industry.

Regional Insights

North America: North America remains a dominant force in the deep learning market, driven by the presence of leading tech companies and extensive R&D in AI and machine learning. The U.S. has made significant investments in AI-driven solutions, particularly in sectors like healthcare, automotive, and finance. For example, the adoption of deep learning in autonomous vehicles and the healthcare diagnostics sector has surged due to increasing demand for precision and automation. The region's robust cloud infrastructure, coupled with support from government initiatives like the National AI Initiative Act, further boosts deep learning market growth.

Europe: Europe is rapidly integrating deep learning into its industrial landscape, focusing on manufacturing, healthcare, and transportation sectors. Governments across the region have introduced initiatives to support AI and machine learning technologies. Countries like Germany and the UK are heavily investing in AI research centers. The EU’s "AI Act" proposal, introduced in April 2021, is expected to regulate AI applications, fostering innovation while ensuring compliance with ethical standards. Europe's advancements in Industry 4.0 also make it a key player in adopting deep learning technologies for smart manufacturing.

Asia-Pacific: The Asia-Pacific region is experiencing rapid growth in the deep learning market, with China, Japan, and South Korea at the forefront. China’s government has set a target of becoming a global AI leader by 2030, promoting large-scale adoption of AI technologies in various industries such as e-commerce, healthcare, and smart cities. India is also emerging as a significant player, leveraging deep learning in areas like agriculture, telecommunications, and government services. The region's focus on digital transformation and AI-driven initiatives, such as South Korea’s AI National Strategy, is helping fuel deep learning market growth.

Middle East & Africa: The adoption of deep learning technologies is still in its early stages in the Middle East and Africa, but increasing investments in AI infrastructure are evident. Countries like the UAE and Saudi Arabia are actively exploring the use of AI for smart cities, energy management, and healthcare. The UAE’s AI strategy launched in 2017 continues to push for widespread adoption of AI and deep learning technologies across sectors. Additionally, African countries are leveraging deep learning to address challenges in agriculture and education, aided by partnerships with global technology firms.

Latin America: Latin America is gradually adopting deep learning technologies, primarily in financial services, healthcare, and retail sectors. Brazil, Mexico, and Argentina are leading this transformation. The increasing penetration of mobile technology and digital services is encouraging the adoption of AI-powered applications. In Brazil, deep learning is used in fintech for fraud detection and customer behavior analysis. Governments in the region are also exploring AI for public services, such as smart city initiatives, to improve urban planning and sustainability efforts.

Key Industry Developments

April 2023 - Nvidia announced the launch of its H100 Tensor Core GPU, designed specifically for deep learning tasks. This powerful chip is expected to revolutionize AI computing and push deep learning capabilities to new levels, enhancing applications in industries ranging from autonomous driving to healthcare diagnostics. Nvidia’s hardware is widely used in data centers across North America, Asia-Pacific, and Europe, significantly impacting the global deep learning ecosystem.

August 2023 - Alphabet's DeepMind announced an expansion into new research areas, including drug discovery and quantum computing. This move is expected to accelerate advancements in the healthcare and pharmaceutical sectors by leveraging deep learning models to predict molecular structures and interactions. DeepMind's ongoing collaboration with European pharmaceutical companies highlights Europe’s pivotal role in using AI to advance medical research.

March 2024 - Baidu launched new AI cloud services focused on deep learning and big data analytics. The initiative aims to accelerate China’s digital transformation, focusing on sectors like e-commerce, autonomous driving, and healthcare. Baidu’s advanced AI solutions are being widely adopted across Asia-Pacific, helping companies enhance operational efficiency and customer experience using deep learning technologies.

Market Landscape and Trends

The expansion of deep learning market is driven by various trends such as continued advances in model architectures, pre-trained models with transfer learning, and explainable artificial intelligence (XAI). Researchers are continuously developing and refining deep neural network architectures to improve performance and efficiency. This includes innovations in convolutional neural networks (CNNs), recurrent neural networks (RNNs), transformers, and more.

Furthermore, the use of pre-trained models for transfer learning is becoming increasingly popular. These models, trained on massive datasets, are fine-tuned for specific tasks, reducing the need for large amounts of labeled data. Moreover, there is a growing emphasis on making deep learning models more interpretable and explainable, as AI systems are applied to critical domains, to understand the reasoning behind model decisions.

Key Benefits for Stakeholders

  • This report provides a quantitative analysis of the market segments, current trends, estimations, and dynamics of the deep learning market forecast from 2022 to 2032 to identify the prevailing market opportunities.
  • Market research is offered along with information related to key drivers, restraints, and opportunities of deep learning market outlook.
  • Porter's five forces analysis highlights the potency of buyers and suppliers to enable stakeholders to make profit-oriented business decisions and strengthen their supplier-buyer network.
  • In-depth analysis of the deep learning market segmentation assists in determining the prevailing deep learning market opportunity.
  • Major countries in each region are mapped according to their revenue contribution to the global market.
  • Market player positioning facilitates benchmarking and provides a clear understanding of the present position of the market players.
  • The report includes an analysis of the regional as well as global deep learning market trends, key players, market segments, application areas, and market growth strategies.

Key Market Segments

  • By Component
    • Software
    • Service
    • Hardware
  • By Application
    • Image recognition
    • Signal recognition
    • Data mining
    • Others
  • By Industry Vertical
    • Security
    • Marketing
    • Automotive
    • Retail and E-Commerce
    • Healthcare
    • Manufacturing
    • Law
    • Others
  • By Region
    • North America
      • U.S.
      • Canada
    • Europe
      • UK
      • Germany
      • France
      • Italy
      • Spain
      • Rest of Europe
    • Asia-Pacific
      • China
      • Japan
      • India
      • Australia
      • South Korea
      • Rest of Asia-Pacific
    • LAMEA
      • Latin America
      • Middle East
      • Africa


Key Market Players

  • Google LLC
  • Samsung
  • NVIDIA Corporation
  • Microsoft Corporation
  • Intel Corporation
  • Qualcomm Technologies, Inc. 
  • IBM Corporation
  • Advanced Micro Devices Inc.(Xilinx Inc.)
  • Xilinx
  • Amazon Web Services, Inc.
  • CHAPTER 1: INTRODUCTION

    • 1.1. Report description

    • 1.2. Key market segments

    • 1.3. Key benefits to the stakeholders

    • 1.4. Research Methodology

      • 1.4.1. Primary research

      • 1.4.2. Secondary research

      • 1.4.3. Analyst tools and models

  • CHAPTER 2: EXECUTIVE SUMMARY

    • 2.1. CXO Perspective

  • CHAPTER 3: MARKET OVERVIEW

    • 3.1. Market definition and scope

    • 3.2. Key findings

      • 3.2.1. Top impacting factors

      • 3.2.2. Top investment pockets

    • 3.3. Porter’s five forces analysis

      • 3.3.1. Moderate-to-high bargaining power of suppliers

      • 3.3.2. Moderate-to-high threat of new entrants

      • 3.3.3. Low -to-moderate threat of substitutes

      • 3.3.4. Moderate-to-high intensity of rivalry

      • 3.3.5. Moderate-to-high bargaining power of buyers

    • 3.4. Market dynamics

      • 3.4.1. Drivers

        • 3.4.1.1. Decline in hardware cost
        • 3.4.1.2. Increase in data availability and advancements in the hardware
        • 3.4.1.3. Increasing investment in research and development to support deep learning

      • 3.4.2. Restraints

        • 3.4.2.1. Increase in complexity in hardware due to complex algorithm used in technology
        • 3.4.2.2. Lack of technical expertise & absence of standards and protocols

      • 3.4.3. Opportunities

        • 3.4.3.1. Cumulative spending in healthcare and manufacturing industry

    • 3.5. COVID-19 Impact Analysis on the market

  • CHAPTER 4: DEEP LEARNING MARKET, BY COMPONENT

    • 4.1. Overview

      • 4.1.1. Market size and forecast

    • 4.2. Hardware

      • 4.2.1. Key market trends, growth factors and opportunities

      • 4.2.2. Market size and forecast, by region

      • 4.2.3. Market share analysis by country

    • 4.3. Software

      • 4.3.1. Key market trends, growth factors and opportunities

      • 4.3.2. Market size and forecast, by region

      • 4.3.3. Market share analysis by country

    • 4.4. Service

      • 4.4.1. Key market trends, growth factors and opportunities

      • 4.4.2. Market size and forecast, by region

      • 4.4.3. Market share analysis by country

  • CHAPTER 5: DEEP LEARNING MARKET, BY APPLICATION

    • 5.1. Overview

      • 5.1.1. Market size and forecast

    • 5.2. Image recognition

      • 5.2.1. Key market trends, growth factors and opportunities

      • 5.2.2. Market size and forecast, by region

      • 5.2.3. Market share analysis by country

    • 5.3. Signal recognition

      • 5.3.1. Key market trends, growth factors and opportunities

      • 5.3.2. Market size and forecast, by region

      • 5.3.3. Market share analysis by country

    • 5.4. Data mining

      • 5.4.1. Key market trends, growth factors and opportunities

      • 5.4.2. Market size and forecast, by region

      • 5.4.3. Market share analysis by country

    • 5.5. Others

      • 5.5.1. Key market trends, growth factors and opportunities

      • 5.5.2. Market size and forecast, by region

      • 5.5.3. Market share analysis by country

  • CHAPTER 6: DEEP LEARNING MARKET, BY INDUSTRY VERTICAL

    • 6.1. Overview

      • 6.1.1. Market size and forecast

    • 6.2. Security

      • 6.2.1. Key market trends, growth factors and opportunities

      • 6.2.2. Market size and forecast, by region

      • 6.2.3. Market share analysis by country

    • 6.3. Marketing

      • 6.3.1. Key market trends, growth factors and opportunities

      • 6.3.2. Market size and forecast, by region

      • 6.3.3. Market share analysis by country

    • 6.4. Automotive

      • 6.4.1. Key market trends, growth factors and opportunities

      • 6.4.2. Market size and forecast, by region

      • 6.4.3. Market share analysis by country

    • 6.5. Retail and E-Commerce

      • 6.5.1. Key market trends, growth factors and opportunities

      • 6.5.2. Market size and forecast, by region

      • 6.5.3. Market share analysis by country

    • 6.6. Healthcare

      • 6.6.1. Key market trends, growth factors and opportunities

      • 6.6.2. Market size and forecast, by region

      • 6.6.3. Market share analysis by country

    • 6.7. Manufacturing

      • 6.7.1. Key market trends, growth factors and opportunities

      • 6.7.2. Market size and forecast, by region

      • 6.7.3. Market share analysis by country

    • 6.8. Law

      • 6.8.1. Key market trends, growth factors and opportunities

      • 6.8.2. Market size and forecast, by region

      • 6.8.3. Market share analysis by country

    • 6.9. Others

      • 6.9.1. Key market trends, growth factors and opportunities

      • 6.9.2. Market size and forecast, by region

      • 6.9.3. Market share analysis by country

  • CHAPTER 7: DEEP LEARNING MARKET, BY REGION

    • 7.1. Overview

      • 7.1.1. Market size and forecast By Region

    • 7.2. North America

      • 7.2.1. Key market trends, growth factors and opportunities

      • 7.2.2. Market size and forecast, by Component

      • 7.2.3. Market size and forecast, by Application

      • 7.2.4. Market size and forecast, by Industry Vertical

      • 7.2.5. Market size and forecast, by country

        • 7.2.5.1. U.S.
          • 7.2.5.1.1. Market size and forecast, by Component
          • 7.2.5.1.2. Market size and forecast, by Application
          • 7.2.5.1.3. Market size and forecast, by Industry Vertical
        • 7.2.5.2. Canada
          • 7.2.5.2.1. Market size and forecast, by Component
          • 7.2.5.2.2. Market size and forecast, by Application
          • 7.2.5.2.3. Market size and forecast, by Industry Vertical
    • 7.3. Europe

      • 7.3.1. Key market trends, growth factors and opportunities

      • 7.3.2. Market size and forecast, by Component

      • 7.3.3. Market size and forecast, by Application

      • 7.3.4. Market size and forecast, by Industry Vertical

      • 7.3.5. Market size and forecast, by country

        • 7.3.5.1. UK
          • 7.3.5.1.1. Market size and forecast, by Component
          • 7.3.5.1.2. Market size and forecast, by Application
          • 7.3.5.1.3. Market size and forecast, by Industry Vertical
        • 7.3.5.2. Germany
          • 7.3.5.2.1. Market size and forecast, by Component
          • 7.3.5.2.2. Market size and forecast, by Application
          • 7.3.5.2.3. Market size and forecast, by Industry Vertical
        • 7.3.5.3. France
          • 7.3.5.3.1. Market size and forecast, by Component
          • 7.3.5.3.2. Market size and forecast, by Application
          • 7.3.5.3.3. Market size and forecast, by Industry Vertical
        • 7.3.5.4. Italy
          • 7.3.5.4.1. Market size and forecast, by Component
          • 7.3.5.4.2. Market size and forecast, by Application
          • 7.3.5.4.3. Market size and forecast, by Industry Vertical
        • 7.3.5.5. Spain
          • 7.3.5.5.1. Market size and forecast, by Component
          • 7.3.5.5.2. Market size and forecast, by Application
          • 7.3.5.5.3. Market size and forecast, by Industry Vertical
        • 7.3.5.6. Rest of Europe
          • 7.3.5.6.1. Market size and forecast, by Component
          • 7.3.5.6.2. Market size and forecast, by Application
          • 7.3.5.6.3. Market size and forecast, by Industry Vertical
    • 7.4. Asia-Pacific

      • 7.4.1. Key market trends, growth factors and opportunities

      • 7.4.2. Market size and forecast, by Component

      • 7.4.3. Market size and forecast, by Application

      • 7.4.4. Market size and forecast, by Industry Vertical

      • 7.4.5. Market size and forecast, by country

        • 7.4.5.1. China
          • 7.4.5.1.1. Market size and forecast, by Component
          • 7.4.5.1.2. Market size and forecast, by Application
          • 7.4.5.1.3. Market size and forecast, by Industry Vertical
        • 7.4.5.2. Japan
          • 7.4.5.2.1. Market size and forecast, by Component
          • 7.4.5.2.2. Market size and forecast, by Application
          • 7.4.5.2.3. Market size and forecast, by Industry Vertical
        • 7.4.5.3. India
          • 7.4.5.3.1. Market size and forecast, by Component
          • 7.4.5.3.2. Market size and forecast, by Application
          • 7.4.5.3.3. Market size and forecast, by Industry Vertical
        • 7.4.5.4. Australia
          • 7.4.5.4.1. Market size and forecast, by Component
          • 7.4.5.4.2. Market size and forecast, by Application
          • 7.4.5.4.3. Market size and forecast, by Industry Vertical
        • 7.4.5.5. South Korea
          • 7.4.5.5.1. Market size and forecast, by Component
          • 7.4.5.5.2. Market size and forecast, by Application
          • 7.4.5.5.3. Market size and forecast, by Industry Vertical
        • 7.4.5.6. Rest of Asia-Pacific
          • 7.4.5.6.1. Market size and forecast, by Component
          • 7.4.5.6.2. Market size and forecast, by Application
          • 7.4.5.6.3. Market size and forecast, by Industry Vertical
    • 7.5. LAMEA

      • 7.5.1. Key market trends, growth factors and opportunities

      • 7.5.2. Market size and forecast, by Component

      • 7.5.3. Market size and forecast, by Application

      • 7.5.4. Market size and forecast, by Industry Vertical

      • 7.5.5. Market size and forecast, by country

        • 7.5.5.1. Latin America
          • 7.5.5.1.1. Market size and forecast, by Component
          • 7.5.5.1.2. Market size and forecast, by Application
          • 7.5.5.1.3. Market size and forecast, by Industry Vertical
        • 7.5.5.2. Middle East
          • 7.5.5.2.1. Market size and forecast, by Component
          • 7.5.5.2.2. Market size and forecast, by Application
          • 7.5.5.2.3. Market size and forecast, by Industry Vertical
        • 7.5.5.3. Africa
          • 7.5.5.3.1. Market size and forecast, by Component
          • 7.5.5.3.2. Market size and forecast, by Application
          • 7.5.5.3.3. Market size and forecast, by Industry Vertical
  • CHAPTER 8: COMPETITIVE LANDSCAPE

    • 8.1. Introduction

    • 8.2. Top winning strategies

    • 8.3. Product Mapping of Top 10 Player

    • 8.4. Competitive Dashboard

    • 8.5. Competitive Heatmap

    • 8.6. Top player positioning, 2022

  • CHAPTER 9: COMPANY PROFILES

    • 9.1. Advanced Micro Devices Inc.(Xilinx Inc.)

      • 9.1.1. Company overview

      • 9.1.2. Key Executives

      • 9.1.3. Company snapshot

      • 9.1.4. Operating business segments

      • 9.1.5. Product portfolio

      • 9.1.6. Business performance

      • 9.1.7. Key strategic moves and developments

    • 9.2. Amazon Web Services, Inc.

      • 9.2.1. Company overview

      • 9.2.2. Key Executives

      • 9.2.3. Company snapshot

      • 9.2.4. Operating business segments

      • 9.2.5. Product portfolio

      • 9.2.6. Business performance

      • 9.2.7. Key strategic moves and developments

    • 9.3. Google LLC

      • 9.3.1. Company overview

      • 9.3.2. Key Executives

      • 9.3.3. Company snapshot

      • 9.3.4. Operating business segments

      • 9.3.5. Product portfolio

      • 9.3.6. Business performance

      • 9.3.7. Key strategic moves and developments

    • 9.4. IBM Corporation

      • 9.4.1. Company overview

      • 9.4.2. Key Executives

      • 9.4.3. Company snapshot

      • 9.4.4. Operating business segments

      • 9.4.5. Product portfolio

      • 9.4.6. Business performance

      • 9.4.7. Key strategic moves and developments

    • 9.5. Intel Corporation

      • 9.5.1. Company overview

      • 9.5.2. Key Executives

      • 9.5.3. Company snapshot

      • 9.5.4. Operating business segments

      • 9.5.5. Product portfolio

      • 9.5.6. Business performance

      • 9.5.7. Key strategic moves and developments

    • 9.6. Microsoft Corporation

      • 9.6.1. Company overview

      • 9.6.2. Key Executives

      • 9.6.3. Company snapshot

      • 9.6.4. Operating business segments

      • 9.6.5. Product portfolio

      • 9.6.6. Business performance

      • 9.6.7. Key strategic moves and developments

    • 9.7. NVIDIA Corporation

      • 9.7.1. Company overview

      • 9.7.2. Key Executives

      • 9.7.3. Company snapshot

      • 9.7.4. Operating business segments

      • 9.7.5. Product portfolio

      • 9.7.6. Business performance

      • 9.7.7. Key strategic moves and developments

    • 9.8. Qualcomm Technologies, Inc. 

      • 9.8.1. Company overview

      • 9.8.2. Key Executives

      • 9.8.3. Company snapshot

      • 9.8.4. Operating business segments

      • 9.8.5. Product portfolio

      • 9.8.6. Business performance

      • 9.8.7. Key strategic moves and developments

    • 9.9. Samsung

      • 9.9.1. Company overview

      • 9.9.2. Key Executives

      • 9.9.3. Company snapshot

      • 9.9.4. Operating business segments

      • 9.9.5. Product portfolio

      • 9.9.6. Business performance

      • 9.9.7. Key strategic moves and developments

    • 9.10. Xilinx

      • 9.10.1. Company overview

      • 9.10.2. Key Executives

      • 9.10.3. Company snapshot

      • 9.10.4. Operating business segments

      • 9.10.5. Product portfolio

      • 9.10.6. Business performance

      • 9.10.7. Key strategic moves and developments

  • LIST OF TABLES

  • TABLE 01. GLOBAL DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 02. DEEP LEARNING MARKET FOR HARDWARE, BY REGION, 2022-2032 ($MILLION)
    TABLE 03. DEEP LEARNING MARKET FOR SOFTWARE, BY REGION, 2022-2032 ($MILLION)
    TABLE 04. DEEP LEARNING MARKET FOR SERVICE, BY REGION, 2022-2032 ($MILLION)
    TABLE 05. GLOBAL DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 06. DEEP LEARNING MARKET FOR IMAGE RECOGNITION, BY REGION, 2022-2032 ($MILLION)
    TABLE 07. DEEP LEARNING MARKET FOR SIGNAL RECOGNITION, BY REGION, 2022-2032 ($MILLION)
    TABLE 08. DEEP LEARNING MARKET FOR DATA MINING, BY REGION, 2022-2032 ($MILLION)
    TABLE 09. DEEP LEARNING MARKET FOR OTHERS, BY REGION, 2022-2032 ($MILLION)
    TABLE 10. GLOBAL DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 11. DEEP LEARNING MARKET FOR SECURITY, BY REGION, 2022-2032 ($MILLION)
    TABLE 12. DEEP LEARNING MARKET FOR MARKETING, BY REGION, 2022-2032 ($MILLION)
    TABLE 13. DEEP LEARNING MARKET FOR AUTOMOTIVE, BY REGION, 2022-2032 ($MILLION)
    TABLE 14. DEEP LEARNING MARKET FOR RETAIL AND E-COMMERCE, BY REGION, 2022-2032 ($MILLION)
    TABLE 15. DEEP LEARNING MARKET FOR HEALTHCARE, BY REGION, 2022-2032 ($MILLION)
    TABLE 16. DEEP LEARNING MARKET FOR MANUFACTURING, BY REGION, 2022-2032 ($MILLION)
    TABLE 17. DEEP LEARNING MARKET FOR LAW, BY REGION, 2022-2032 ($MILLION)
    TABLE 18. DEEP LEARNING MARKET FOR OTHERS, BY REGION, 2022-2032 ($MILLION)
    TABLE 19. DEEP LEARNING MARKET, BY REGION, 2022-2032 ($MILLION)
    TABLE 20. NORTH AMERICA DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 21. NORTH AMERICA DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 22. NORTH AMERICA DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 23. NORTH AMERICA DEEP LEARNING MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 24. U.S. DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 25. U.S. DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 26. U.S. DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 27. CANADA DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 28. CANADA DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 29. CANADA DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 30. EUROPE DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 31. EUROPE DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 32. EUROPE DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 33. EUROPE DEEP LEARNING MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 34. UK DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 35. UK DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 36. UK DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 37. GERMANY DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 38. GERMANY DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 39. GERMANY DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 40. FRANCE DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 41. FRANCE DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 42. FRANCE DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 43. ITALY DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 44. ITALY DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 45. ITALY DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 46. SPAIN DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 47. SPAIN DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 48. SPAIN DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 49. REST OF EUROPE DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 50. REST OF EUROPE DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 51. REST OF EUROPE DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 52. ASIA-PACIFIC DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 53. ASIA-PACIFIC DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 54. ASIA-PACIFIC DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 55. ASIA-PACIFIC DEEP LEARNING MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 56. CHINA DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 57. CHINA DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 58. CHINA DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 59. JAPAN DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 60. JAPAN DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 61. JAPAN DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 62. INDIA DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 63. INDIA DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 64. INDIA DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 65. AUSTRALIA DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 66. AUSTRALIA DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 67. AUSTRALIA DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 68. SOUTH KOREA DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 69. SOUTH KOREA DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 70. SOUTH KOREA DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 71. REST OF ASIA-PACIFIC DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 72. REST OF ASIA-PACIFIC DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 73. REST OF ASIA-PACIFIC DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 74. LAMEA DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 75. LAMEA DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 76. LAMEA DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 77. LAMEA DEEP LEARNING MARKET, BY COUNTRY, 2022-2032 ($MILLION)
    TABLE 78. LATIN AMERICA DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 79. LATIN AMERICA DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 80. LATIN AMERICA DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 81. MIDDLE EAST DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 82. MIDDLE EAST DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 83. MIDDLE EAST DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 84. AFRICA DEEP LEARNING MARKET, BY COMPONENT, 2022-2032 ($MILLION)
    TABLE 85. AFRICA DEEP LEARNING MARKET, BY APPLICATION, 2022-2032 ($MILLION)
    TABLE 86. AFRICA DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022-2032 ($MILLION)
    TABLE 87. ADVANCED MICRO DEVICES INC.(XILINX INC.): KEY EXECUTIVES
    TABLE 88. ADVANCED MICRO DEVICES INC.(XILINX INC.): COMPANY SNAPSHOT
    TABLE 89. ADVANCED MICRO DEVICES INC.(XILINX INC.): PRODUCT SEGMENTS
    TABLE 90. ADVANCED MICRO DEVICES INC.(XILINX INC.): PRODUCT PORTFOLIO
    TABLE 91. ADVANCED MICRO DEVICES INC.(XILINX INC.): KEY STRATERGIES
    TABLE 92. AMAZON WEB SERVICES, INC.: KEY EXECUTIVES
    TABLE 93. AMAZON WEB SERVICES, INC.: COMPANY SNAPSHOT
    TABLE 94. AMAZON WEB SERVICES, INC.: SERVICE SEGMENTS
    TABLE 95. AMAZON WEB SERVICES, INC.: PRODUCT PORTFOLIO
    TABLE 96. AMAZON WEB SERVICES, INC.: KEY STRATERGIES
    TABLE 97. GOOGLE LLC: KEY EXECUTIVES
    TABLE 98. GOOGLE LLC: COMPANY SNAPSHOT
    TABLE 99. GOOGLE LLC: SERVICE SEGMENTS
    TABLE 100. GOOGLE LLC: PRODUCT PORTFOLIO
    TABLE 101. GOOGLE LLC: KEY STRATERGIES
    TABLE 102. IBM CORPORATION: KEY EXECUTIVES
    TABLE 103. IBM CORPORATION: COMPANY SNAPSHOT
    TABLE 104. IBM CORPORATION: SERVICE SEGMENTS
    TABLE 105. IBM CORPORATION: PRODUCT PORTFOLIO
    TABLE 106. IBM CORPORATION: KEY STRATERGIES
    TABLE 107. INTEL CORPORATION: KEY EXECUTIVES
    TABLE 108. INTEL CORPORATION: COMPANY SNAPSHOT
    TABLE 109. INTEL CORPORATION: PRODUCT SEGMENTS
    TABLE 110. INTEL CORPORATION: PRODUCT PORTFOLIO
    TABLE 111. INTEL CORPORATION: KEY STRATERGIES
    TABLE 112. MICROSOFT CORPORATION: KEY EXECUTIVES
    TABLE 113. MICROSOFT CORPORATION: COMPANY SNAPSHOT
    TABLE 114. MICROSOFT CORPORATION: SERVICE SEGMENTS
    TABLE 115. MICROSOFT CORPORATION: PRODUCT PORTFOLIO
    TABLE 116. MICROSOFT CORPORATION: KEY STRATERGIES
    TABLE 117. NVIDIA CORPORATION: KEY EXECUTIVES
    TABLE 118. NVIDIA CORPORATION: COMPANY SNAPSHOT
    TABLE 119. NVIDIA CORPORATION: PRODUCT SEGMENTS
    TABLE 120. NVIDIA CORPORATION: PRODUCT PORTFOLIO
    TABLE 121. NVIDIA CORPORATION: KEY STRATERGIES
    TABLE 122. QUALCOMM TECHNOLOGIES, INC. : KEY EXECUTIVES
    TABLE 123. QUALCOMM TECHNOLOGIES, INC. : COMPANY SNAPSHOT
    TABLE 124. QUALCOMM TECHNOLOGIES, INC. : SERVICE SEGMENTS
    TABLE 125. QUALCOMM TECHNOLOGIES, INC. : PRODUCT PORTFOLIO
    TABLE 126. QUALCOMM TECHNOLOGIES, INC. : KEY STRATERGIES
    TABLE 127. SAMSUNG: KEY EXECUTIVES
    TABLE 128. SAMSUNG: COMPANY SNAPSHOT
    TABLE 129. SAMSUNG: SERVICE SEGMENTS
    TABLE 130. SAMSUNG: PRODUCT PORTFOLIO
    TABLE 131. SAMSUNG: KEY STRATERGIES
    TABLE 132. XILINX: KEY EXECUTIVES
    TABLE 133. XILINX: COMPANY SNAPSHOT
    TABLE 134. XILINX: SERVICE SEGMENTS
    TABLE 135. XILINX: PRODUCT PORTFOLIO
    TABLE 136. XILINX: KEY STRATERGIES
  • LIST OF FIGURES

  • FIGURE 01. DEEP LEARNING MARKET, 2022-2032
    FIGURE 02. SEGMENTATION OF DEEP LEARNING MARKET,2022-2032
    FIGURE 03. TOP INVESTMENT POCKETS IN DEEP LEARNING MARKET (2023-2032)
    FIGURE 04. BARGAINING POWER OF SUPPLIERS
    FIGURE 05. BARGAINING POWER OF BUYERS
    FIGURE 06. THREAT OF SUBSTITUTION
    FIGURE 07. THREAT OF SUBSTITUTION
    FIGURE 08. COMPETITIVE RIVALRY
    FIGURE 09. GLOBAL DEEP LEARNING MARKET:DRIVERS, RESTRAINTS AND OPPORTUNITIES
    FIGURE 10. DEEP LEARNING MARKET, BY COMPONENT, 2022(%)
    FIGURE 11. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR HARDWARE, BY COUNTRY 2022 AND 2032(%)
    FIGURE 12. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR SOFTWARE, BY COUNTRY 2022 AND 2032(%)
    FIGURE 13. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR SERVICE, BY COUNTRY 2022 AND 2032(%)
    FIGURE 14. DEEP LEARNING MARKET, BY APPLICATION, 2022(%)
    FIGURE 15. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR IMAGE RECOGNITION, BY COUNTRY 2022 AND 2032(%)
    FIGURE 16. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR SIGNAL RECOGNITION, BY COUNTRY 2022 AND 2032(%)
    FIGURE 17. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR DATA MINING, BY COUNTRY 2022 AND 2032(%)
    FIGURE 18. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR OTHERS, BY COUNTRY 2022 AND 2032(%)
    FIGURE 19. DEEP LEARNING MARKET, BY INDUSTRY VERTICAL, 2022(%)
    FIGURE 20. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR SECURITY, BY COUNTRY 2022 AND 2032(%)
    FIGURE 21. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR MARKETING, BY COUNTRY 2022 AND 2032(%)
    FIGURE 22. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR AUTOMOTIVE, BY COUNTRY 2022 AND 2032(%)
    FIGURE 23. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR RETAIL AND E-COMMERCE, BY COUNTRY 2022 AND 2032(%)
    FIGURE 24. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR HEALTHCARE, BY COUNTRY 2022 AND 2032(%)
    FIGURE 25. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR MANUFACTURING, BY COUNTRY 2022 AND 2032(%)
    FIGURE 26. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR LAW, BY COUNTRY 2022 AND 2032(%)
    FIGURE 27. COMPARATIVE SHARE ANALYSIS OF DEEP LEARNING MARKET FOR OTHERS, BY COUNTRY 2022 AND 2032(%)
    FIGURE 28. DEEP LEARNING MARKET BY REGION, 2022(%)
    FIGURE 29. U.S. DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 30. CANADA DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 31. UK DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 32. GERMANY DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 33. FRANCE DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 34. ITALY DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 35. SPAIN DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 36. REST OF EUROPE DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 37. CHINA DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 38. JAPAN DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 39. INDIA DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 40. AUSTRALIA DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 41. SOUTH KOREA DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 42. REST OF ASIA-PACIFIC DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 43. LATIN AMERICA DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 44. MIDDLE EAST DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 45. AFRICA DEEP LEARNING MARKET, 2022-2032 ($MILLION)
    FIGURE 46. TOP WINNING STRATEGIES, BY YEAR (2020-2023)
    FIGURE 47. TOP WINNING STRATEGIES, BY DEVELOPMENT (2020-2023)
    FIGURE 48. TOP WINNING STRATEGIES, BY COMPANY (2020-2023)
    FIGURE 49. PRODUCT MAPPING OF TOP 10 PLAYERS
    FIGURE 50. COMPETITIVE DASHBOARD
    FIGURE 51. COMPETITIVE HEATMAP: DEEP LEARNING MARKET
    FIGURE 52. TOP PLAYER POSITIONING, 2022
    FIGURE 53. ADVANCED MICRO DEVICES INC.(XILINX INC.): NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 54. ADVANCED MICRO DEVICES INC.(XILINX INC.): RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022
    FIGURE 55. ADVANCED MICRO DEVICES INC.(XILINX INC.): REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 56. ADVANCED MICRO DEVICES INC.(XILINX INC.): REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 57. AMAZON WEB SERVICES, INC.: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 58. AMAZON WEB SERVICES, INC.: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 59. AMAZON WEB SERVICES, INC.: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 60. GOOGLE LLC: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 61. GOOGLE LLC: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 62. GOOGLE LLC: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 63. GOOGLE LLC: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 64. IBM CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 65. IBM CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 66. IBM CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 67. IBM CORPORATION: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 68. INTEL CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 69. INTEL CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 70. INTEL CORPORATION: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 71. INTEL CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 72. MICROSOFT CORPORATION: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 73. MICROSOFT CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 74. MICROSOFT CORPORATION: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 75. MICROSOFT CORPORATION: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 76. NVIDIA CORPORATION: NET REVENUE, 2021-2023 ($MILLION)
    FIGURE 77. NVIDIA CORPORATION: RESEARCH & DEVELOPMENT EXPENDITURE, 2021-2023 ($MILLION)
    FIGURE 78. NVIDIA CORPORATION: REVENUE SHARE BY SEGMENT, 2023 (%)
    FIGURE 79. NVIDIA CORPORATION: REVENUE SHARE BY REGION, 2023 (%)
    FIGURE 80. QUALCOMM TECHNOLOGIES, INC. : NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 81. QUALCOMM TECHNOLOGIES, INC. : RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 82. QUALCOMM TECHNOLOGIES, INC. : REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 83. QUALCOMM TECHNOLOGIES, INC. : REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 84. SAMSUNG: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 85. SAMSUNG: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 86. SAMSUNG: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 87. SAMSUNG: REVENUE SHARE BY REGION, 2022 (%)
    FIGURE 88. XILINX: NET REVENUE, 2020-2022 ($MILLION)
    FIGURE 89. XILINX: RESEARCH & DEVELOPMENT EXPENDITURE, 2020-2022 ($MILLION)
    FIGURE 90. XILINX: REVENUE SHARE BY SEGMENT, 2022 (%)
    FIGURE 91. XILINX: REVENUE SHARE BY SEGMENT, 2021 (%)

Purchase Full Report of
Deep Learning Market

PURCHASE OPTIONS



* Taxes/Fees, If applicable will be added during checkout. All prices in USD.

Have a question ?

Need to add more ?

Avail up to 30% discount on subscription plans on


Avenue