Identifications of events, observations, or items that are suspicious and different from regular norms are known as anomaly detection or outlier detection. Data scientists use anomaly detection on unlabeled data. Standard deviation, outliers, exceptions, novelties, and noise are all anomalies in the data. There are three types of methods used to detect anomalies, unsupervised, semi-supervised, and supervised. The technique used to detect anomalies depends on labeled or unlabeled data set. Unlabeled set of data based on built-in properties needs an unsupervised anomaly technique. While normal, labeled data set uses semi-supervised anomaly detection whereas supervised anomaly detection technique uses normal and abnormal labels. System health monitoring, intrusion detection, fault detection, event detections in sensor networks detecting ecosystem disturbance systems, defect detection of images using machine vision are all applications of anomaly detection.
Every single aspect of the business can be effectively measured with the help of analytics programs and various management software. This includes the operational performance of applications and infrastructure and key performance indicator which evaluates the success of the business. There are many different metrics to measure in business such as a new market campaign to increase leads, a promotional discount to increase sales, a price glitch that is impacting revenue, etc. which in turn generate a large amount of data to explore. With the help of anomaly, detection businesses can get information about performance, product quality, and user experience.
COVID-19 Scenario Analysis:
- The emergence of COVID-19, lockdown, and restrictions imposed have forced many organizations to shift their traditional working methodologies to remote working.
- The IT sector has been dependent on its data centers, cloud systems, servers, and digital devices for remote employees to access the company's data. However, this has led to an increase in cybercrime attacks and data breaches as well.
- To ensure the resilience of online services and digital platforms against cybercrime security and risk manager must safeguard their organizations even more than before.
- Additionally, to identify and prevent malicious activities on the computer network, organizations are increasing the adoption of anomaly-based intrusion detection systems.
· Hence to increase the security of their cloud-based data organizations are using anomaly detections thereby increasing the anomaly detection market growth.
Top Impacting Factors: Market Scenario Analysis, Trends, Drivers and Impact Analysis
Many business organizations' decision-making depends on data, but the data generated is massive and there could be even a chance that valuable information is lost or misunderstood. Therefore, to find irregularities or anomalies in data, organizations use anomaly detection techniques.
Connected Devices and Data
As the number of connected devices in the field of banking finance, IT, healthcare, manufacturing, government & defense is increasing, so is the demand for anomaly detection. These sectors are more exposed to serious frauds, thefts, hacking because they deal with important data daily which allows cybercriminals to control an organization's infrastructure. Additionally, experts can diagnose and treat the patients more effectively with the help of anomaly detection in medical images. Furthermore, fake users, online fraudsters, predators, rumor mongers that can impact the social business can be identified with the help of anomaly detections in social networking. Because of these reasons anomaly detection solution market is expected to grow during the forecast period.
The Absence of Skills and Expertise
For analyzing network and user behavior anomaly detection tools and solutions are used. However, an increase in open-source alternatives is expected to restrict the demand for commercial solutions. Furthermore, to operate tools and solutions, skills and expertise are required. Less availability of skilled experts acts as a challenge for the market growth. Because of these reasons, the anomaly detection market growth is expected to restrain during the forecast period.
Market Trends
Anomaly Detection is Extensively Used in BFSI Industry Holding a Large Sum of Market Share
Many activities and transactions performed by employees, customers, and external agencies are included in banking operations. As these activities are complex, it requires constant monitoring to ensure that the bank or its end customers are affected severely because of any malicious attacks. Because for these reasons, organizations are coming up with solutions and services for anomaly detection. For instance, by generating alerts and maintaining diligence and compliance CSI's software is detecting fraud anomalies and updating banks about suspicious activities. Additionally, technologies such as AI combined with machine learning are helping companies to understand the reasons for the sudden change in behavior patterns. For instance, Microsoft Azure's anomaly detector provides a powerful interface engine, automatic detection, and customized settings. Additionally, the increase in the development of technologies such as big data analytics, machine learning, artificial intelligence has increased the demand for anomaly detection. As companies use these technologies for anomaly detection and risk reduction of data loss by optimizing the business.
Key Benefits of the Report:
- This study presents the analytical depiction of the anomaly detection industry along with the current trends and future estimations to determine the imminent investment pockets.
- The report presents information related to key drivers, restraints, and opportunities along with a detailed analysis of the anomaly detection market share.
- The current market is quantitatively analyzed to highlight the anomaly detection market growth scenario.
- Porter’s five forces analysis illustrates the potency of buyers & suppliers in the market.
- The report provides a detailed anomaly detection market analysis based on competitive intensity and how the competition will take shape in the coming years
Questions Answered in the Anomaly Detection Market Research Report:
- Which are the leading market players active in the anomaly detection market?
- What are the detailed impacts of COVID-19 on the market?
- What are the current trends that will influence the anomaly detection market in the next few years?
- What are the driving factors, restraints, and opportunities in the anomaly detection market?
- What are the projections for the future that would help in taking further strategic steps?
Anomaly Detection Market Report Highlights
Aspects | Details |
By Component |
|
By Solution Type |
|
By Service Type |
|
By Deployment Type |
|
By Technology |
|
By Enterprise Size |
|
By Industry Vertical |
|
By Region |
|
Key Market Players | Gurucul, Happiest Minds, Splunk, Inc., IBM Corporation, SAS Institute, Inc., Trend Micro,Inc., Guardian Analytics, Dell Technologies, Inc., Cisco Systems, Inc., Securonix, Inc., Symantec Corporation, Wipro Limited, Hewlett Packard Enterprise Company |
Loading Table Of Content...