0
Upcoming Allied Market Research
2023
Deep Learning Processor Market

Deep Learning Processor Market

by Type (GPU, ASIC, CPU, FPGA) and by End User (Consumer Electronics, Healthcare, Automotive, Industrial, Others): Global Opportunity Analysis and Industry Forecast, 2023-2032

Report Code: A12135
Nov 2023 | Pages: NA
Tables: NA
Charts: NA
  • Formats*:

  • pdf

    Single User License, Five User
    License & Enterprise User License

  • xls

    Data Pack Excel License

  • ppt

    It comes with the additional cost
    of $2500.00 contact sales.

 

COVID-19

Pandemic disrupted the entire world and affected many industries.

Get detailed COVID-19 impact analysis on the Deep Learning Processor Market

Request Now !

Deep learning is a subset of machine learning, which is essentially a neural network with three or more layers. These neural networks attempt to simulate the behavior of the human brain—albeit far from matching its ability—allowing it to “learn” from large amounts of data. While a neural network with a single layer can still make approximate predictions, additional hidden layers can help to optimize and refine for accuracy. Deep learning drives many artificial intelligence (AI) applications and services that improve automation, performing analytical and physical tasks without human intervention.

The deep learning processor market share is segmented on the basis of type, technology, end user, and region. Based on type, the market is bifurcated into GPU, ASIC, CPU, and FPGA. By technology, it is categorized into System-on-chip (SIC), System-in-package (SIP), Multi-chip Module, and others. By end user, it is categorized into consumer electronics, healthcare, automotive, industrial, and others. Based on region, the market is analyzed across North America (the U.S. and Canada), Europe (Germany, the UK, France, and Rest of Europe), Asia-Pacific (China, Japan, India, and Rest of Asia-Pacific), and LAMEA (Latin America, Middle East, and Africa).

Key players operating in the deep learning processor market include Microsoft Corporation, Google LLC, Intel Corporation, Oracle Corporation, Amazon Web Services Inc., Salesforce.com, Inc., SAP SE, Zest AI, IBM, DataRobot Inc., and Accenture. These players adopt collaboration, partnership, and agreement as their key developmental strategies to increase revenue of the deep learning processor industry and develop new products for enhancing product portfolio.

COVID-19 Scenario Analysis

The COVID-19 pandemic has impacted the society and overall economy across the globe. The impact of this outbreak is growing day-by-day as well as affecting the supply chain. It is creating uncertainty in the stock market, declining the business confidence, slowing down supply chain, and increasing panic among customers. European countries under lockdowns have suffered a major loss of business and revenue due to shutdown of manufacturing units in the region. The impact of the pandemic can be easily observed from the less demand of consumer electronics like gaming phones, laptops etc. which use deep learning processor.

In response of COVID-19's long-term implications, governments are attempting to address the problem by enacting beneficial initiatives and policies such as financial packages, lower interest rates, and tax exemptions. Significant growth in the deep learning processors can be expected during the forecast period once the lockdown is be over and the production rate is anticipated come to its previous pace.

Top Impacting Factors: Market Scenario Analysis, Trends, Drivers, and Impact Analysis

The market for deep learning processors is experiencing growth due to reasons such as the expansion in the volume of big data and the growth in popularity of artificial intelligence &machine learning. AI is being used in a variety of industries, which has fueled the need for deep learning processors. As more data is created from many technical sources, the demand for faster and more advanced deep learning computers for faster processing is expanding. The growth in interest in quantum computing presents a huge chance for the deep learning processor market to grow. Increased investments in smart homes and smart city initiatives in many nations would result in a surge in the usage of deep learning processors, which is expected to boost market growth in the near future.

The absence of a competent workforce has limited the market expansion of deep learning processors. A worker with the ability to process or carry out sophisticated algorithms for AI development is required to handle deep learning software and its applications. Furthermore, AI and automated systems can be challenging to control at times.

The Global Deep Learning Processor Market Trends

Increase in the Demand for GPU

By chip type, GPUs (graphics processing units) account for a large market share. It is becoming more popular for gaming and watching videos. However, as technology advances, GPUs are now mostly utilized for high-resolution images and artificial intelligence (AI). Due to the widespread usage of low-power technology, demand has increased. Because of the growth in use of quantum computing systems, the CPU chip category is expected to increase at a significant CAGR throughout the projection period. Due to its capacity to perform complicated algorithms in the shortest time feasible, quantum computing is increasingly being adopted by large multinational and information technology businesses, favorably boosting the deep learning processor market.

Rapid Development in Use of Consumer Electronics

The consumer electronics industry makes extensive use of deep learning processors. The market for better gadgets with improved applications is growing in response to technological advancements. The market for deep learning processors is developing as artificial intelligence and machine learning become more widely used in this sector. Machine learning chips are being used in smartphones to increase features and maximize capabilities such as a quicker CPU and better multitasking ability. AI applications are increasingly being implemented in smartphones and tablets to improve user interface and customer experience, driving up demand for deep learning processors. New devices with advanced technologies are being introduced for areas such as healthcare and communication and technology, which heavily rely on deep learning processors for faster work and improved efficiency. Deep learning processors are increasingly being used in this industry to improve customer experience through AI and augmented reality, which is driving the growth of the deep learning processor market.

Key Benefits of the Report

  • This study presents the analytical depiction of the global deep learning processor industry along with the current trends and future estimations to determine the imminent investment pockets.
  • The report presents information related to key drivers, restraints, and opportunities along with detailed analysis of the deep learning processor market share.
  • The current market is quantitatively analyzed to highlight the growth scenario of the deep learning processor industry.
  • Porter’s five forces analysis illustrates the potency of buyers and suppliers in the market.
  • The report provides a detailed deep learning processor market analysis based on competitive intensity and how the competition will take shape in coming years.

Questions Answered in the Deep Learning Processor Market Research Report

  • Which are the leading players active in the deep learning processor market?
  • What are the current trends that will influence the market in the next few years?
  • What are the driving factors, restraints, and opportunities in the deep learning processor market?
  • What are the projections for the future that would help in taking further strategic steps?

Deep Learning Processor Market Report Highlights

Aspects Details
By Type
  • GPU
  • ASIC
  • CPU
  • FPGA
By End User
  • Consumer Electronics
  • Healthcare
  • Automotive
  • Industrial
  • Others
By Region
  • North America  (U.S., Canada, Mexico)
  • Europe  (France, Germany, Italy, UK, Rest of Europe)
  • Asia-Pacific  (China, Japan, India, South Korea, Rest of Asia-Pacific)
  • LAMEA  (UAE, Argentina, Rest of LAMEA)
Key Market Players Company1, Company2, Company9, Company5, Company3, Company8, Company6, Company7, Company10, Company4
 
  • CHAPTER 1: INTRODUCTION

    • 1.1. Report Description

    • 1.2. Key Market Segments

    • 1.3. Key Benefits

    • 1.4. Research Methodology

      • 1.4.1. Primary Research

      • 1.4.2. Secondary Research

      • 1.4.3. Analyst Tools and Models

  • CHAPTER 2: EXECUTIVE SUMMARY

    • 2.1. CXO Perspective

  • CHAPTER 3: MARKET LANDSCAPE

    • 3.1. Market Definition and Scope

    • 3.2. Key Findings

      • 3.2.1. Top Investment Pockets

      • 3.2.2. Top Winning Strategies

    • 3.3. Porter's Five Forces Analysis

      • 3.3.1. Bargaining Power of Suppliers

      • 3.3.2. Threat of New Entrants

      • 3.3.3. Threat of Substitutes

      • 3.3.4. Competitive Rivalry

      • 3.3.5. Bargaining Power among Buyers

    • 3.5. Market Dynamics

      • 3.5.1. Drivers

      • 3.5.2. Restraints

      • 3.5.3. Opportunities

    • 3.6. COVID-19 Impact Analysis

  • CHAPTER 4: DEEP LEARNING PROCESSOR MARKET, BY TYPE

    • 4.1. Market Overview

      • 4.1.1 Market Size and Forecast, By Type

    • 4.2. GPU

      • 4.2.1. Key Market Trends, Growth Factors and Opportunities

      • 4.2.2. Market Size and Forecast, By Region

      • 4.2.3. Market Share Analysis, By Country

    • 4.3. ASIC

      • 4.3.1. Key Market Trends, Growth Factors and Opportunities

      • 4.3.2. Market Size and Forecast, By Region

      • 4.3.3. Market Share Analysis, By Country

    • 4.4. CPU

      • 4.4.1. Key Market Trends, Growth Factors and Opportunities

      • 4.4.2. Market Size and Forecast, By Region

      • 4.4.3. Market Share Analysis, By Country

    • 4.5. FPGA

      • 4.5.1. Key Market Trends, Growth Factors and Opportunities

      • 4.5.2. Market Size and Forecast, By Region

      • 4.5.3. Market Share Analysis, By Country

  • CHAPTER 5: DEEP LEARNING PROCESSOR MARKET, BY END USER

    • 5.1. Market Overview

      • 5.1.1 Market Size and Forecast, By End User

    • 5.2. Consumer Electronics

      • 5.2.1. Key Market Trends, Growth Factors and Opportunities

      • 5.2.2. Market Size and Forecast, By Region

      • 5.2.3. Market Share Analysis, By Country

    • 5.3. Healthcare

      • 5.3.1. Key Market Trends, Growth Factors and Opportunities

      • 5.3.2. Market Size and Forecast, By Region

      • 5.3.3. Market Share Analysis, By Country

    • 5.4. Automotive

      • 5.4.1. Key Market Trends, Growth Factors and Opportunities

      • 5.4.2. Market Size and Forecast, By Region

      • 5.4.3. Market Share Analysis, By Country

    • 5.5. Industrial

      • 5.5.1. Key Market Trends, Growth Factors and Opportunities

      • 5.5.2. Market Size and Forecast, By Region

      • 5.5.3. Market Share Analysis, By Country

    • 5.6. Others

      • 5.6.1. Key Market Trends, Growth Factors and Opportunities

      • 5.6.2. Market Size and Forecast, By Region

      • 5.6.3. Market Share Analysis, By Country

  • CHAPTER 6: DEEP LEARNING PROCESSOR MARKET, BY REGION

    • 6.1. Market Overview

      • 6.1.1 Market Size and Forecast, By Region

    • 6.2. North America

      • 6.2.1. Key Market Trends and Opportunities

      • 6.2.2. Market Size and Forecast, By Type

      • 6.2.3. Market Size and Forecast, By End User

      • 6.2.4. Market Size and Forecast, By Country

      • 6.2.5. U.S. Deep Learning Processor Market

        • 6.2.5.1. Market Size and Forecast, By Type
        • 6.2.5.2. Market Size and Forecast, By End User
      • 6.2.6. Canada Deep Learning Processor Market

        • 6.2.6.1. Market Size and Forecast, By Type
        • 6.2.6.2. Market Size and Forecast, By End User
      • 6.2.7. Mexico Deep Learning Processor Market

        • 6.2.7.1. Market Size and Forecast, By Type
        • 6.2.7.2. Market Size and Forecast, By End User
    • 6.3. Europe

      • 6.3.1. Key Market Trends and Opportunities

      • 6.3.2. Market Size and Forecast, By Type

      • 6.3.3. Market Size and Forecast, By End User

      • 6.3.4. Market Size and Forecast, By Country

      • 6.3.5. France Deep Learning Processor Market

        • 6.3.5.1. Market Size and Forecast, By Type
        • 6.3.5.2. Market Size and Forecast, By End User
      • 6.3.6. Germany Deep Learning Processor Market

        • 6.3.6.1. Market Size and Forecast, By Type
        • 6.3.6.2. Market Size and Forecast, By End User
      • 6.3.7. Italy Deep Learning Processor Market

        • 6.3.7.1. Market Size and Forecast, By Type
        • 6.3.7.2. Market Size and Forecast, By End User
      • 6.3.8. Spain Deep Learning Processor Market

        • 6.3.8.1. Market Size and Forecast, By Type
        • 6.3.8.2. Market Size and Forecast, By End User
      • 6.3.9. UK Deep Learning Processor Market

        • 6.3.9.1. Market Size and Forecast, By Type
        • 6.3.9.2. Market Size and Forecast, By End User
      • 6.3.10. Russia Deep Learning Processor Market

        • 6.3.10.1. Market Size and Forecast, By Type
        • 6.3.10.2. Market Size and Forecast, By End User
      • 6.3.11. Rest Of Europe Deep Learning Processor Market

        • 6.3.11.1. Market Size and Forecast, By Type
        • 6.3.11.2. Market Size and Forecast, By End User
    • 6.4. Asia-Pacific

      • 6.4.1. Key Market Trends and Opportunities

      • 6.4.2. Market Size and Forecast, By Type

      • 6.4.3. Market Size and Forecast, By End User

      • 6.4.4. Market Size and Forecast, By Country

      • 6.4.5. China Deep Learning Processor Market

        • 6.4.5.1. Market Size and Forecast, By Type
        • 6.4.5.2. Market Size and Forecast, By End User
      • 6.4.6. Japan Deep Learning Processor Market

        • 6.4.6.1. Market Size and Forecast, By Type
        • 6.4.6.2. Market Size and Forecast, By End User
      • 6.4.7. India Deep Learning Processor Market

        • 6.4.7.1. Market Size and Forecast, By Type
        • 6.4.7.2. Market Size and Forecast, By End User
      • 6.4.8. South Korea Deep Learning Processor Market

        • 6.4.8.1. Market Size and Forecast, By Type
        • 6.4.8.2. Market Size and Forecast, By End User
      • 6.4.9. Australia Deep Learning Processor Market

        • 6.4.9.1. Market Size and Forecast, By Type
        • 6.4.9.2. Market Size and Forecast, By End User
      • 6.4.10. Thailand Deep Learning Processor Market

        • 6.4.10.1. Market Size and Forecast, By Type
        • 6.4.10.2. Market Size and Forecast, By End User
      • 6.4.11. Malaysia Deep Learning Processor Market

        • 6.4.11.1. Market Size and Forecast, By Type
        • 6.4.11.2. Market Size and Forecast, By End User
      • 6.4.12. Indonesia Deep Learning Processor Market

        • 6.4.12.1. Market Size and Forecast, By Type
        • 6.4.12.2. Market Size and Forecast, By End User
      • 6.4.13. Rest of Asia Pacific Deep Learning Processor Market

        • 6.4.13.1. Market Size and Forecast, By Type
        • 6.4.13.2. Market Size and Forecast, By End User
    • 6.5. LAMEA

      • 6.5.1. Key Market Trends and Opportunities

      • 6.5.2. Market Size and Forecast, By Type

      • 6.5.3. Market Size and Forecast, By End User

      • 6.5.4. Market Size and Forecast, By Country

      • 6.5.5. Brazil Deep Learning Processor Market

        • 6.5.5.1. Market Size and Forecast, By Type
        • 6.5.5.2. Market Size and Forecast, By End User
      • 6.5.6. South Africa Deep Learning Processor Market

        • 6.5.6.1. Market Size and Forecast, By Type
        • 6.5.6.2. Market Size and Forecast, By End User
      • 6.5.7. Saudi Arabia Deep Learning Processor Market

        • 6.5.7.1. Market Size and Forecast, By Type
        • 6.5.7.2. Market Size and Forecast, By End User
      • 6.5.8. UAE Deep Learning Processor Market

        • 6.5.8.1. Market Size and Forecast, By Type
        • 6.5.8.2. Market Size and Forecast, By End User
      • 6.5.9. Argentina Deep Learning Processor Market

        • 6.5.9.1. Market Size and Forecast, By Type
        • 6.5.9.2. Market Size and Forecast, By End User
      • 6.5.10. Rest of LAMEA Deep Learning Processor Market

        • 6.5.10.1. Market Size and Forecast, By Type
        • 6.5.10.2. Market Size and Forecast, By End User
  • CHAPTER 7: COMPETITIVE LANDSCAPE

    • 7.1. Introduction

    • 7.2. Top Winning Strategies

    • 7.3. Product Mapping Of Top 10 Player

    • 7.4. Competitive Dashboard

    • 7.5. Competitive Heatmap

    • 7.6. Top Player Positioning,2022

  • CHAPTER 8: COMPANY PROFILES

    • 8.1. Company1

      • 8.1.1. Company Overview

      • 8.1.2. Key Executives

      • 8.1.3. Company Snapshot

      • 8.1.4. Operating Business Segments

      • 8.1.5. Product Portfolio

      • 8.1.6. Business Performance

      • 8.1.7. Key Strategic Moves and Developments

    • 8.2. Company2

      • 8.2.1. Company Overview

      • 8.2.2. Key Executives

      • 8.2.3. Company Snapshot

      • 8.2.4. Operating Business Segments

      • 8.2.5. Product Portfolio

      • 8.2.6. Business Performance

      • 8.2.7. Key Strategic Moves and Developments

    • 8.3. Company3

      • 8.3.1. Company Overview

      • 8.3.2. Key Executives

      • 8.3.3. Company Snapshot

      • 8.3.4. Operating Business Segments

      • 8.3.5. Product Portfolio

      • 8.3.6. Business Performance

      • 8.3.7. Key Strategic Moves and Developments

    • 8.4. Company4

      • 8.4.1. Company Overview

      • 8.4.2. Key Executives

      • 8.4.3. Company Snapshot

      • 8.4.4. Operating Business Segments

      • 8.4.5. Product Portfolio

      • 8.4.6. Business Performance

      • 8.4.7. Key Strategic Moves and Developments

    • 8.5. Company5

      • 8.5.1. Company Overview

      • 8.5.2. Key Executives

      • 8.5.3. Company Snapshot

      • 8.5.4. Operating Business Segments

      • 8.5.5. Product Portfolio

      • 8.5.6. Business Performance

      • 8.5.7. Key Strategic Moves and Developments

    • 8.6. Company6

      • 8.6.1. Company Overview

      • 8.6.2. Key Executives

      • 8.6.3. Company Snapshot

      • 8.6.4. Operating Business Segments

      • 8.6.5. Product Portfolio

      • 8.6.6. Business Performance

      • 8.6.7. Key Strategic Moves and Developments

    • 8.7. Company7

      • 8.7.1. Company Overview

      • 8.7.2. Key Executives

      • 8.7.3. Company Snapshot

      • 8.7.4. Operating Business Segments

      • 8.7.5. Product Portfolio

      • 8.7.6. Business Performance

      • 8.7.7. Key Strategic Moves and Developments

    • 8.8. Company8

      • 8.8.1. Company Overview

      • 8.8.2. Key Executives

      • 8.8.3. Company Snapshot

      • 8.8.4. Operating Business Segments

      • 8.8.5. Product Portfolio

      • 8.8.6. Business Performance

      • 8.8.7. Key Strategic Moves and Developments

    • 8.9. Company9

      • 8.9.1. Company Overview

      • 8.9.2. Key Executives

      • 8.9.3. Company Snapshot

      • 8.9.4. Operating Business Segments

      • 8.9.5. Product Portfolio

      • 8.9.6. Business Performance

      • 8.9.7. Key Strategic Moves and Developments

    • 8.10. Company10

      • 8.10.1. Company Overview

      • 8.10.2. Key Executives

      • 8.10.3. Company Snapshot

      • 8.10.4. Operating Business Segments

      • 8.10.5. Product Portfolio

      • 8.10.6. Business Performance

      • 8.10.7. Key Strategic Moves and Developments

  • LIST OF TABLES

  • TABLE 1. GLOBAL DEEP LEARNING PROCESSOR MARKET, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 2. GLOBAL DEEP LEARNING PROCESSOR MARKET FOR GPU, BY REGION, 2022-2032 ($MILLION)
  • TABLE 3. GLOBAL DEEP LEARNING PROCESSOR MARKET FOR ASIC, BY REGION, 2022-2032 ($MILLION)
  • TABLE 4. GLOBAL DEEP LEARNING PROCESSOR MARKET FOR CPU, BY REGION, 2022-2032 ($MILLION)
  • TABLE 5. GLOBAL DEEP LEARNING PROCESSOR MARKET FOR FPGA, BY REGION, 2022-2032 ($MILLION)
  • TABLE 6. GLOBAL DEEP LEARNING PROCESSOR MARKET, BY END USER, 2022-2032 ($MILLION)
  • TABLE 7. GLOBAL DEEP LEARNING PROCESSOR MARKET FOR CONSUMER ELECTRONICS, BY REGION, 2022-2032 ($MILLION)
  • TABLE 8. GLOBAL DEEP LEARNING PROCESSOR MARKET FOR HEALTHCARE, BY REGION, 2022-2032 ($MILLION)
  • TABLE 9. GLOBAL DEEP LEARNING PROCESSOR MARKET FOR AUTOMOTIVE, BY REGION, 2022-2032 ($MILLION)
  • TABLE 10. GLOBAL DEEP LEARNING PROCESSOR MARKET FOR INDUSTRIAL, BY REGION, 2022-2032 ($MILLION)
  • TABLE 11. GLOBAL DEEP LEARNING PROCESSOR MARKET FOR OTHERS, BY REGION, 2022-2032 ($MILLION)
  • TABLE 12. GLOBAL DEEP LEARNING PROCESSOR MARKET, BY REGION, 2022-2032 ($MILLION)
  • TABLE 13. NORTH AMERICA DEEP LEARNING PROCESSOR, BY REGION, 2022-2032 ($MILLION)
  • TABLE 14. NORTH AMERICA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 15. NORTH AMERICA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 16. U.S. DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 17. U.S. DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 18. CANADA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 19. CANADA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 20. MEXICO DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 21. MEXICO DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 22. EUROPE DEEP LEARNING PROCESSOR, BY REGION, 2022-2032 ($MILLION)
  • TABLE 23. EUROPE DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 24. EUROPE DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 25. FRANCE DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 26. FRANCE DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 27. GERMANY DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 28. GERMANY DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 29. ITALY DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 30. ITALY DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 31. SPAIN DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 32. SPAIN DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 33. UK DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 34. UK DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 35. RUSSIA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 36. RUSSIA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 37. REST OF EUROPE DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 38. REST OF EUROPE DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 39. ASIA-PACIFIC DEEP LEARNING PROCESSOR, BY REGION, 2022-2032 ($MILLION)
  • TABLE 40. ASIA-PACIFIC DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 41. ASIA-PACIFIC DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 42. CHINA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 43. CHINA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 44. JAPAN DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 45. JAPAN DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 46. INDIA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 47. INDIA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 48. SOUTH KOREA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 49. SOUTH KOREA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 50. AUSTRALIA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 51. AUSTRALIA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 52. THAILAND DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 53. THAILAND DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 54. MALAYSIA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 55. MALAYSIA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 56. INDONESIA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 57. INDONESIA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 58. REST OF ASIA PACIFIC DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 59. REST OF ASIA PACIFIC DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 60. LAMEA DEEP LEARNING PROCESSOR, BY REGION, 2022-2032 ($MILLION)
  • TABLE 61. LAMEA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 62. LAMEA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 63. BRAZIL DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 64. BRAZIL DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 65. SOUTH AFRICA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 66. SOUTH AFRICA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 67. SAUDI ARABIA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 68. SAUDI ARABIA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 69. UAE DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 70. UAE DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 71. ARGENTINA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 72. ARGENTINA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 73. REST OF LAMEA DEEP LEARNING PROCESSOR, BY TYPE, 2022-2032 ($MILLION)
  • TABLE 74. REST OF LAMEA DEEP LEARNING PROCESSOR, BY END USER, 2022-2032 ($MILLION)
  • TABLE 75. COMPANY1: KEY EXECUTIVES
  • TABLE 76. COMPANY1: COMPANY SNAPSHOT
  • TABLE 77. COMPANY1: OPERATING SEGMENTS
  • TABLE 78. COMPANY1: PRODUCT PORTFOLIO
  • TABLE 79. COMPANY1: KEY STRATEGIC MOVES AND DEVELOPMENTS
  • TABLE 80. COMPANY2: KEY EXECUTIVES
  • TABLE 81. COMPANY2: COMPANY SNAPSHOT
  • TABLE 82. COMPANY2: OPERATING SEGMENTS
  • TABLE 83. COMPANY2: PRODUCT PORTFOLIO
  • TABLE 84. COMPANY2: KEY STRATEGIC MOVES AND DEVELOPMENTS
  • TABLE 85. COMPANY3: KEY EXECUTIVES
  • TABLE 86. COMPANY3: COMPANY SNAPSHOT
  • TABLE 87. COMPANY3: OPERATING SEGMENTS
  • TABLE 88. COMPANY3: PRODUCT PORTFOLIO
  • TABLE 89. COMPANY3: KEY STRATEGIC MOVES AND DEVELOPMENTS
  • TABLE 90. COMPANY4: KEY EXECUTIVES
  • TABLE 91. COMPANY4: COMPANY SNAPSHOT
  • TABLE 92. COMPANY4: OPERATING SEGMENTS
  • TABLE 93. COMPANY4: PRODUCT PORTFOLIO
  • TABLE 94. COMPANY4: KEY STRATEGIC MOVES AND DEVELOPMENTS
  • TABLE 95. COMPANY5: KEY EXECUTIVES
  • TABLE 96. COMPANY5: COMPANY SNAPSHOT
  • TABLE 97. COMPANY5: OPERATING SEGMENTS
  • TABLE 98. COMPANY5: PRODUCT PORTFOLIO
  • TABLE 99. COMPANY5: KEY STRATEGIC MOVES AND DEVELOPMENTS
  • TABLE 100. COMPANY6: KEY EXECUTIVES
  • TABLE 101. COMPANY6: COMPANY SNAPSHOT
  • TABLE 102. COMPANY6: OPERATING SEGMENTS
  • TABLE 103. COMPANY6: PRODUCT PORTFOLIO
  • TABLE 104. COMPANY6: KEY STRATEGIC MOVES AND DEVELOPMENTS
  • TABLE 105. COMPANY7: KEY EXECUTIVES
  • TABLE 106. COMPANY7: COMPANY SNAPSHOT
  • TABLE 107. COMPANY7: OPERATING SEGMENTS
  • TABLE 108. COMPANY7: PRODUCT PORTFOLIO
  • TABLE 109. COMPANY7: KEY STRATEGIC MOVES AND DEVELOPMENTS
  • TABLE 110. COMPANY8: KEY EXECUTIVES
  • TABLE 111. COMPANY8: COMPANY SNAPSHOT
  • TABLE 112. COMPANY8: OPERATING SEGMENTS
  • TABLE 113. COMPANY8: PRODUCT PORTFOLIO
  • TABLE 114. COMPANY8: KEY STRATEGIC MOVES AND DEVELOPMENTS
  • TABLE 115. COMPANY9: KEY EXECUTIVES
  • TABLE 116. COMPANY9: COMPANY SNAPSHOT
  • TABLE 117. COMPANY9: OPERATING SEGMENTS
  • TABLE 118. COMPANY9: PRODUCT PORTFOLIO
  • TABLE 119. COMPANY9: KEY STRATEGIC MOVES AND DEVELOPMENTS
  • TABLE 120. COMPANY10: KEY EXECUTIVES
  • TABLE 121. COMPANY10: COMPANY SNAPSHOT
  • TABLE 122. COMPANY10: OPERATING SEGMENTS
  • TABLE 123. COMPANY10: PRODUCT PORTFOLIO
  • TABLE 124. COMPANY10: KEY STRATEGIC MOVES AND DEVELOPMENTS
  • LIST OF FIGURES

  • FIGURE 1. GLOBAL DEEP LEARNING PROCESSOR MARKET SEGMENTATION
  • FIGURE 2. GLOBAL DEEP LEARNING PROCESSOR MARKET
  • FIGURE 3. SEGMENTATION DEEP LEARNING PROCESSOR MARKET
  • FIGURE 4. TOP INVESTMENT POCKET IN DEEP LEARNING PROCESSOR MARKET
  • FIGURE 5. MODERATE BARGAINING POWER OF BUYERS
  • FIGURE 6. MODERATE BARGAINING POWER OF SUPPLIERS
  • FIGURE 7. MODERATE THREAT OF NEW ENTRANTS
  • FIGURE 8. LOW THREAT OF SUBSTITUTION
  • FIGURE 9. HIGH COMPETITIVE RIVALRY
  • FIGURE 10. OPPORTUNITIES, RESTRAINTS AND DRIVERS: GLOBALDEEP LEARNING PROCESSOR MARKET
  • FIGURE 11. DEEP LEARNING PROCESSOR MARKET SEGMENTATION, BY BY TYPE
  • FIGURE 12. DEEP LEARNING PROCESSOR MARKET FOR GPU, BY COUNTRY, 2022-2032 ($MILLION)
  • FIGURE 13. DEEP LEARNING PROCESSOR MARKET FOR ASIC, BY COUNTRY, 2022-2032 ($MILLION)
  • FIGURE 14. DEEP LEARNING PROCESSOR MARKET FOR CPU, BY COUNTRY, 2022-2032 ($MILLION)
  • FIGURE 15. DEEP LEARNING PROCESSOR MARKET FOR FPGA, BY COUNTRY, 2022-2032 ($MILLION)
  • FIGURE 16. DEEP LEARNING PROCESSOR MARKET SEGMENTATION, BY BY END USER
  • FIGURE 17. DEEP LEARNING PROCESSOR MARKET FOR CONSUMER ELECTRONICS, BY COUNTRY, 2022-2032 ($MILLION)
  • FIGURE 18. DEEP LEARNING PROCESSOR MARKET FOR HEALTHCARE, BY COUNTRY, 2022-2032 ($MILLION)
  • FIGURE 19. DEEP LEARNING PROCESSOR MARKET FOR AUTOMOTIVE, BY COUNTRY, 2022-2032 ($MILLION)
  • FIGURE 20. DEEP LEARNING PROCESSOR MARKET FOR INDUSTRIAL, BY COUNTRY, 2022-2032 ($MILLION)
  • FIGURE 21. DEEP LEARNING PROCESSOR MARKET FOR OTHERS, BY COUNTRY, 2022-2032 ($MILLION)
  • FIGURE 22. TOP WINNING STRATEGIES, BY YEAR, 2020-2022*
  • FIGURE 23. TOP WINNING STRATEGIES, BY DEVELOPMENT, 2020-2022*
  • FIGURE 24. TOP WINNING STRATEGIES, BY COMPANY, 2020-2022*
  • FIGURE 25. PRODUCT MAPPING OF TOP 10 PLAYERS
  • FIGURE 26. COMPETITIVE DASHBOARD
  • FIGURE 27. COMPETITIVE HEATMAP: DEEP LEARNING PROCESSOR MARKET
  • FIGURE 28. Top player positioning, 2022
  • FIGURE 29. COMPANY1: NET SALES, 2020-2022 ($MILLION)
  • FIGURE 30. COMPANY1: REVENUE SHARE, BY SEGMENT, 2032 (%)
  • FIGURE 31. COMPANY1: REVENUE SHARE, BY REGION, 2032 (%)
  • FIGURE 32. COMPANY2: NET SALES, 2020-2022 ($MILLION)
  • FIGURE 33. COMPANY2: REVENUE SHARE, BY SEGMENT, 2032 (%)
  • FIGURE 34. COMPANY2: REVENUE SHARE, BY REGION, 2032 (%)
  • FIGURE 35. COMPANY3: NET SALES, 2020-2022 ($MILLION)
  • FIGURE 36. COMPANY3: REVENUE SHARE, BY SEGMENT, 2032 (%)
  • FIGURE 37. COMPANY3: REVENUE SHARE, BY REGION, 2032 (%)
  • FIGURE 38. COMPANY4: NET SALES, 2020-2022 ($MILLION)
  • FIGURE 39. COMPANY4: REVENUE SHARE, BY SEGMENT, 2032 (%)
  • FIGURE 40. COMPANY4: REVENUE SHARE, BY REGION, 2032 (%)
  • FIGURE 41. COMPANY5: NET SALES, 2020-2022 ($MILLION)
  • FIGURE 42. COMPANY5: REVENUE SHARE, BY SEGMENT, 2032 (%)
  • FIGURE 43. COMPANY5: REVENUE SHARE, BY REGION, 2032 (%)
  • FIGURE 44. COMPANY6: NET SALES, 2020-2022 ($MILLION)
  • FIGURE 45. COMPANY6: REVENUE SHARE, BY SEGMENT, 2032 (%)
  • FIGURE 46. COMPANY6: REVENUE SHARE, BY REGION, 2032 (%)
  • FIGURE 47. COMPANY7: NET SALES, 2020-2022 ($MILLION)
  • FIGURE 48. COMPANY7: REVENUE SHARE, BY SEGMENT, 2032 (%)
  • FIGURE 49. COMPANY7: REVENUE SHARE, BY REGION, 2032 (%)
  • FIGURE 50. COMPANY8: NET SALES, 2020-2022 ($MILLION)
  • FIGURE 51. COMPANY8: REVENUE SHARE, BY SEGMENT, 2032 (%)
  • FIGURE 52. COMPANY8: REVENUE SHARE, BY REGION, 2032 (%)
  • FIGURE 53. COMPANY9: NET SALES, 2020-2022 ($MILLION)
  • FIGURE 54. COMPANY9: REVENUE SHARE, BY SEGMENT, 2032 (%)
  • FIGURE 55. COMPANY9: REVENUE SHARE, BY REGION, 2032 (%)
  • FIGURE 56. COMPANY10: NET SALES, 2020-2022 ($MILLION)
  • FIGURE 57. COMPANY10: REVENUE SHARE, BY SEGMENT, 2032 (%)
  • FIGURE 58. COMPANY10: REVENUE SHARE, BY REGION, 2032 (%)

 
 
With collective industry experience of about 200 years of its analysts and experts, Allied Market Research (AMR) encompasses most infallible research methodology for its market intelligence and industry analysis. We do not only engrave the deepest levels of markets but also sneak through its slimmest details for the purpose of our market estimates and forecasts. Our approach helps in building greater market consensus view for size, shape and industry trends within each industry segment. We carefully factor in industry trends and real developments for identifying key growth factors and future course of the market. Our research proceeds are the resultant of high quality data, expert views and analysis and high value independent opinions. Our research process is designed to deliver balanced view of the global markets and allow stakeholders to make informed decisions.

We offer our clients exhaustive research and analysis based on wide variety of factual inputs, which largely include interviews with industry participants, reliable statistics and regional intelligence. Our in-house industry experts play instrumental role in designing analytic tools and models, tailored to the requirements of particular industry segment. These analytical tools and models sanitize the data & statistics and enhance the accuracy of our recommendations and advice. With AMR’s calibrated research process and 360` degree data-evaluation methodology, our clients are assured of receiving:

  • Consistent, valuable, robust and actionable data & analysis that can easily be referenced for strategic business planning
  • Technologically sophisticated and reliable insights through well audited and veracious research methodology
  • Sovereign research proceeds that present a tangible depiction of marketplace


With a strong methodology we are, therefore, confident that our research and analysis are most reliable and guarantees sound business planning.

Secondary research
We refer a broad array of industry sources for our secondary, which typically include; however, not limited to: Company SEC filings, annual reports, company websites, broker & financial reports and investor presentations for competitive scenario and shape of the industry

  • Patent and regulatory databases for understanding of technical & legal developments
  • Scientific and technical writings for product information and related preemptions
  • Regional government and statistical databases for macro analysis
  • Authentic new articles, web-casts and other related releases for market evaluation
  • Internal and external proprietary databases, key market indicators and relevant press releases for market estimates and forecast


Primary research
Our primary research efforts include reaching out participants through mail, tele-conversations, referrals, professional networks and face-to-face interactions. We are also in professional corporate relations with various companies that allow us greater flexibility for reaching out industry participants and commentators for interviews and discussions, fulfilling following functions:

  • Validates and improves the data quality and strengthens research proceeds
  • Further develops analyst team’s market understanding and expertise
  • Supplies authentic information about market size, share, growth and forecasts


Our primary research interview and discussion panels are typically composed of most experienced industry members. These participants include; however, not limited to:

  • Chief executives and VPs of leading corporations specific to industry
  • Product and sales managers or country heads; channel partners and top level distributors; banking, investments and valuation experts Key opinion leaders (KOLs)


Analyst tools and models
AMR has developed set of analyst tools and data models to supplement and expedite the analysis process. Corresponding to markets, where there is significant lack of information and estimates, AMR’s team of experts and analyst develop specific analyst tools and industry models to translate qualitative and quantitative industry indicators into exact industry estimates. These models also allow analysts to examine the prospects and opportunities prevailing in the market to accurately forecast the course of the market.

PURCHASE OPTIONS

Call or Email us

U.S.-Canada Toll-free: +1-800-792-5285
Int'l : +1-503-894-6022
Europe : +44-845-528-1300
Email : help@alliedmarketresearch.com

Looking for Customization?

 Customization Request

Have a Question?

 Speak with Analyst

Any Confusion?

 Inquire Before Buying

Have a glance of the Report

  Enquiry Now

Purchase Full Report of
Deep Learning Processor Market

Start reading.
This Report and over 66,905+ more Reports, Available with Avenue Library. T&C*.

  • Online Only
  • $3,690
  • Online cloud access only
  • Restricted print, copy, paste & download
  • Read only
  • Free industry update
    (Within 180 days)
  • Free report update in next update cycle
  • Data Pack
  • $3,930
  • Restricted to one authorized user
  • One print only
  • Available in
    Excel
  • Free industry update
    (Within 180 days)
  •   Free report update in next update cycle
  • Single User
  • $5,820
  • Restricted to one authorized user
  • One print only
  • Available in
    PDF
  • Free industry update
    (Within 180 days)
  •   Free report update in next update cycle
  • Five Users
  • $6,540
  • Limited to five authorized users
  • Print upto five copies
  • Available in
    PDF
  • Free industry update
    (Within 180 days)
  •   Free report update in next update cycle
  • Enterprise
    License/PDF

  • $9,870
  • Unlimited
    within
    company/enterprise
  • Available in Excel & PDF
  • Free industry update
    (Within 180 days)
  •   Free report update in next update cycle
  • Library
    Membership

  • $999 $ 1,175
    Per User/ Per month/ Billed annually
  • Published Content
    E-access
  • Company Profiles
    E-access
  • Newly Added Content Access
  • 10 PDF
    Downloads
  • 5 Excel Data
    Pack Downloads
  • 250 Company Profiles PDF Downloads
  • Buy Now

*Taxes/Fees, if applicable will be added during checkout. All prices in USD

RELATED REPORTS
 

Why Allied Market Research?

 

Infallible Methodology

To ensure high-level data integrity, accurate analysis, and impeccable forecasts

Analyst Support

For complete satisfaction

Customization

On-demand customization of scope of the report to exactly meet your needs

TARGETED MARKET VIEW

Targeted market view to provide pertinent information and save time of readers

Get fresh content delivered

Get insights on topics that are crucial for your business. Stay abreast of your interest areas.

Get Industry Data Alerts

Why Allied Market Research?

Infallible Methodology

To ensure high-level data integrity, accurate analysis, and impeccable forecasts

Analyst Support

For complete satisfaction

Customization

On-demand customization of scope of the report to exactly meet your needs

TARGETED MARKET VIEW

Targeted market view to provide pertinent information and save time of readers